
1

University of British Columbia
CPSC 111, Intro to Computation

2009W2: Jan-Apr 2010
Tamara Munzner

More Class Design

Lecture 30, Mon Mar 29 2010

http://www.cs.ubc.ca/~tmm/courses/111-10

borrowing from slides by Kurt Eiselt

2

News

■ midterm 2 exam papers handed back today
■ raw and scaled scores were made visible Fri

■ to reach me, send real email to
tmm@cs.ubc.ca
■ please do NOT use the WebCT/Vista Mail

■ A3 will be out Wed since A2 due date
extension to Tue

3

News: Labs Reminder

■ week 10 is standard lab
■ week 11 optional midterm review/correction

■ solutions handed out at end of week 12 labs
■ week 12 is standard lab

4

News: Email

■ To reach me, send real email to
tmm@cs.ubc.ca
■ please do NOT use the WebCT/Vista Mail

5

Reading

■ Weeklies due either this Wed 3/31 or next
Wed 4/7 (since no class Fri, Mon)

■ This week:
■ 8.1-.9 (3rd ed)
■ 9.1-9.9 (2nd ed)

6

Recap: Interfaces as Contract

■ Can write code that works on anything that
fulfills contract
■ even classes that don’t exist yet!

■ Example: Comparable
■ useful if you need to sort items
■ compareTo(object)

■ returns int < 0 if this object less than parameter
■ returns 0 if same
■ returns int > 0 if this object greater than

parameter

7

Recap: Comparable

■ sort method that works on array of objects of
any type that implements Comparable
■ type guaranteed to have compareTo method

■ we need to sort
■ Bunny
■ Giraffe
■ String
■ ...

8

Recap: Wrappers
■ Many classes implement Comparable interface

■ Byte, Character, Double, Float, Integer, Long, Short,
String

■ each implements own version of compareTo
■ Wrapper classes

■ wraps up (encapsulates) primitive type
■ Double: object wrapping primitive double

■ No: sort(double[] myData);
■ Yes: sort(Double[] myData);

9

Recap: Multiple Interfaces

■ Classes can implement more than one
interface at once
■ contract to implement all abstract methods

defined in every interface it implements

public class MyClass implements Interface1, Interface2,
Interface3

{
}

10

Recap: Selection Sort For Int Primitives
// selection sort
public class SortTest1
{
 public static void main(String[] args)
 {
 int[] numbers = {16,3,19,8,12};
 int min, temp;
 //select location of next sorted value
 for (int i = 0; i < numbers.length-1; i++)
 {
 min = i;
 //find the smallest value in the remainder of
 //the array to be sorted
 for (int j = i+1; j < numbers.length; j++)
 {
 if (numbers[j] < numbers[min])
 {
 min = j;
 }
 }
 //swap two values in the array
 temp = numbers[i];
 numbers[i] = numbers[min];
 numbers[min] = temp;
 }

 System.out.println("Printing sorted result");
 for (int i = 0; i < numbers.length; i++)
 {
 System.out.println(numbers[i]);
 }
 }
}

11

Finishing Comparable Code

12

Question 4: [15 marks]
Now let’s use Java to simulate bunnies! (Why? Because everybody likes bunnies!) In our
simulation, each bunny is on a grid at some location defined by an X-coordinate and a
Y-coordinate. Also, each bunny has some number of energy units measured in carrot sticks.
(X-coordinates, Y-coordinates, and the number of carrot sticks are integer values.) Bunnies
can hop north, south, east, or west. When a bunny hops to the north, the bunny’s Y-coordinate
is increased by 1, and the X-coordinate remains unchanged. When a bunny hops to the west,
the bunny’s X-coordinate is decreased by 1, and the Y-coordinate remains unchanged. Same idea
for hops east (X-coordinate increased by 1, Y-coordinate unchanged) and south (Y-coordinate
decreased by 1, X-coordinate unchanged). Note that making one hop requires a bunny to eat one
carrot stick, and when a bunny has eaten all of his or her carrot sticks, that bunny can 't hop.

Use Java to create a Bunny class which can be used to generate Bunny objects that behave as
described above. When a new Bunny object is created, the Bunny always starts at coordinates
X = 10, Y = 10, and the Bunny has 5 carrot sticks. Your Bunny class definition must include
a hop(int direction) method, and a displayInfo() method. The direction parameter is 12 for north,
3 for east, 6 for south, and 9 for west (like a clock face). The hop() method should test to make sure
that the Bunny has not eaten all the carrot sticks – if the Bunny still has carrot sticks, the hop()
method should update coordinates as explained above and print the message “hop”. If no carrot
sticks remain, it should just print the message “This bunny can’t hop”.
The displayInfo() method should print the Bunny’s location and number of remaining carrot
sticks. Below is a simple test program that could be used to test your Bunny class definition,
followed by the output we’d expect to see when using this test program with your Bunny
class definition.

Bunny Class Warmup

13

public class BunnyTest
{
 public static void main(String[] args)
 {
 System.out.println("Testing Peter");
 Bunny peter = new Bunny();
 peter.displayInfo();
 peter.hop(12);
 peter.hop(12);
 peter.hop(9);
 peter.displayInfo();
 System.out.println("Testing Emily");
 Bunny emily = new Bunny();
 emily.displayInfo();
 emily.hop(9);
 emily.hop(9);
 emily.hop(9);
 emily.hop(12);
 emily.hop(9);
 emily.hop12();
 emily.displayInfo();
 }
}

> java BunnyTest
Testing Peter
This bunny is at position 10,10
This bunny has 5 carrot sticks remaining
hop
hop
hop
This bunny is at position 9,12
This bunny has 2 carrot sticks remaining
Testing Emily
This bunny is at position 10,10
This bunny has 5 carrot sticks remaining
hop
hop
hop
hop
hop
This bunny can't hop
This bunny is at position 6,11
This bunny has 0 carrot sticks remaining
>

14

More Bunnies
How could we keep track of a herd of bunnies?

We could make an array of bunnies.

15

More Bunnies
public class BunnyTest1
{
 public static void main (String[] args)
 {
 Bunny[] myBunnyHerd = new Bunny[10];

 myBunnyHerd[0] = new Bunny(3,6,4,"Foofoo");
 myBunnyHerd[1] = new Bunny(7,4,2,"Peter");
 myBunnyHerd[3] = new Bunny(9,2,3,"Ed");

 for(int i = 0; i < myBunnyHerd.length; i++)
 {
 if (myBunnyHerd[i] != null)
 {
 myBunnyHerd[i].hop(3);
 System.out.println(myBunnyHerd[i]);
 }
 }
 }
}

16

Even More Bunnies
Question 5: [16 marks]
The world desperately needs better bunny management software, so please help by
writing a BunnyHerd class. A BunnyHerd object holds an array of Bunny objects. Your
BunnyHerd class definition should include the following four methods:

constructor Expects two parameters, an integer representing the maximum number of
bunnies in the herd, and a String for the name of the herd.

addBunny(int xPos, int yPos, int carrots,String name) Expects four
parameters, the X- and Y-coordinates of the bunny, the number of carrots, and the
name. This method creates a new Bunny object and stores the reference to the object
in the next available location in the BunnyHerd object.

deleteBunny(String name) Expects one parameter, the name of the bunny. This
method removes from the BunnyHerd object all references to bunnies with the given
name by overwriting those references with the null pointer. This method does not
change the pointer to the next available location in the BunnyHerd object.

printHerd() This method uses the toString() method of the Bunny object to print
information about every Bunny in the herd.

