University of British Columbia
CPSC 111, Intro to Computation
2009W2: Jan-Apr 2010

Tamara Munzner

More Class Design
Lecture 30, Mon Mar 29 2010
borrowing from slides by Kurt Eiselt

http://www.cs.ubc.ca/~tmm/courses/111-10

News

= midterm 2 exam papers handed back today
= raw and scaled scores were made visible Fri

= to reach me, send real email to
tmm@cs.ubc.ca
m please do NOT use the WebCT/Vista Mail

= A3 will be out Wed since A2 due date
extension to Tue

News: Labs Reminder

= week 10 is standard lab

= week 11 optional midterm review/correction
= solutions handed out at end of week 12 labs

= week 12 is standard lab

News: Email

= To reach me, send real email to
tmm@cs.ubc.ca
m please do NOT use the WebCT/Vista Mail

Reading

= Weeklies due either this Wed 3/31 or next
Wed 4/7 (since no class Fri, Mon)

= This week:

Recap: Interfaces as Contract

= Can write code that works on anything that
fulfills contract
= even classes that don’t exist yet!

= Example: Comparable
= useful if you need to sort items

Recap: Comparable

= sort method that works on array of objects of
any type that implements Comparable

u type guaranteed to have compareTo method

= we need to sort

Recap: Wrappers

= Many classes implement Comparable interface
= Byte, Character, Double, Float, Integer, Long, Short,
String
= each implements own version of compareTo
= Wrapper classes
= wraps up (encapsulates) primitive type
= Double: object wrapping primitive double

- = compareTo (object) = Bunny
= 8.1-9 (3rd ed) mp. J i = NO: sort(double[] myData) ;
= 9.1-9.9 (2nd ed) = returns int < 0 if this object less than parameter = Giraffe = Yes: sort(Double[] myData);
= returns 0 if same = String
= returns int > 0 if this object greater than ...
parameter
5 6 7 8
. Recap: Selection Sort For Int Primitives L
Recap: Multiple Interfaces Finishing Comparable Code Bunny Class Warmup
i eiace Servzest1 Question 4: [15 marks]
. i . Now let’s use Java to simulate bunnies! (Why? Because everybody likes bunnies!) In our
= Classes can implement more than one bt stevic void nan(Seringll e simulation,cach bunny is o a grid at some location defined by an X coordinate and a
. int(] numbers = {16,3,19,8,12); Y-coordinate. Also, cach bunny has some number of energy units measured in carrot sticks.
interface at once ot min, temp; e sorted value (X-coordinates, Y-coordinates, and the number of carrot sticks are integer valucs.) Bunnics
for (imt i = 07 i < numbers.lengthol; it++) can hop north, south, east, or west. When a bunny hops to the north, the bunny’s Y-coordinate
= contract to imp|ement all abstract methods {inm s is increased by 1, and the X-coordinate remains unchanged. When a bunny hops to the west,
. i . o 7/¢ind the smallest value in the remainder of the bunny’s X-coordinate is decreased by 1, and the Y-coordinate remains unchanged. Same idea
defined in every interface it implements T Ly S Minbers. Lengths 3++) for hops east (X-coordinate increased by 1, Y-coording and south (Y-coordinate
{ decreased by 1, X-coordinate unchanged). Note that making one hop requires a bunny to cat one
if (numbers(j] < numbers(min]) carrot stick, and when a bunny has eaten all of his or her carrot sticks, that bunny can't hop.
ain = 35
public class MyClass implements Interfacel, Interface2,) Use Java to create a Bunny class which can be used to generate Bunny objects that behave as
Interface3 //swap two values in the array described above. When a new Bunny object is created, the Bunny always starts at coordinates.
::::e:"‘:"b:‘m‘mh;tﬂmn]_ X =10,Y =10, and the Bunny has 5 carrot sticks. Your Bunny class definition must include
{ nunbers(min] = temp; ’ a hop(int direction) method, and a displayInfo() method. The direction parameter is 12 for north,
} 3 for east, 6 for south, and 9 for west (like a clock face). The hop() method should test to make sure
System.out.println("Printing sorted result"); that the Bunny has not eaten all the carrot sticks — if the Bunny still has carrot sticks, the hop()
for (int i = 0 i < numbers.length; it+) method should update coordinates as explained above and print the message “hop”. If no carrot
¥ system.out.printin(numbers(il); sticks remain, it should just print the message “This bunny can’t hop™.
The displayInfo() method should print the Bunny’s location and number of remaining carrot
. sticks. Below is a simple test program that could be used to test your Bunny class definition,
followed by the output we’d expect to see when using this test program with your Bunny
9 10 1 class definition. 12
public class BunnyTest
bublic static void main(string(] args) More Bunnies More Bunnies Even More Bunnies
System.out.println("Testing Peter”); iaa? public class BunnyTestl Question 5: [16 marks]
Bunny peter = new Bunny(); How could we keep track of a herd of bunnies? { The world desperately needs better bunny management software, so please help by
peter.displayInfo(); > java BunnyTest : : : : ; writing a BunnyHerd class. A BunnyHerd object holds an array of Bunny objects. Your
ublic static void main (Strin args
PSEEI-:GP:Q; ::i:lgznijtz at position 10,10 W |d k f b . l: { 9Ll 9s) BunnyHerd class definition should include the following four methods:
peter-hop(12); : e could make an array of bunnies
ter hop(9) 7 This bunny hes 5 carrot sticks remaimin . _ .
g:tzi.d?:;‘;l;ylnfuu; hop Y a8 3 GarTeR sticks remainins Bunny[] myBunnyHerd = new Bunny[10]; Expects two an integer the maximum number of
System.out.println("Testing Emily"); hop ., . bunnies in the herd, and a String for the name of the herd.
Bunny emily = new Bunny(); hop myBunnyHerd[0] = new Bunny(3,6,4,"Foofoo");
emily.displayInfo(); This bunny is at position 9,12 myBunnyHerd[1] = new Bunny(7,4,2,"Peter"); addBunny(int xPos, int yPos, int carrots,String name) Expects four
emily.hop(9); This bunny has 2 carrot sticks remaining myBunnyHerd[3] = new Bunny(9,2,3,"Ed"); parameters, the X- and Y-coordinates of the bunny, the number of carrots, and the
emily.hop(9); Testing Emily . name. This method creates a new Bunny object and stores the reference to the object
enily hop(9); This bunny is at position 10,10 r ° a
emily.hop(12); This bunny has 5 carrot sticks remaining for(int i = 0; i < myBunnyHerd.length; i++) in the next available location in the BunnyHerd object.
emily.hop(9); hop e h fthe b Thi
emily.hopl2(); hop N . 1= deleteBunny(String name) Expects one parameter, the name of the bunny. lis
emily.displayInfo(); hop if (myBunnyHerd[i] != null) method removes from the BunnyHerd object all references to bunnies with the given
} hop R name by overwriting those references with the nul1 pointer. This method does not
} hop , myBunnyHerd[i].hop(3); change the pointer to the next available location in the BunnyHerd object.
This bunny can't hop System.out.println(myBunnyHerd[i]);
This bunny is at position 6,11
This bunny has 0 Garrot sticks remaining } printHerd() This method uses the toString () method of the Bunny object to print
N } information about every Bunny in the herd.
13 14) 15 16

}

