
1

University of British Columbia
CPSC 111, Intro to Computation

2009W2: Jan-Apr 2010
Tamara Munzner

Interfaces, Polymorphism

Lecture 29, Fri Mar 26 2010

http://www.cs.ubc.ca/~tmm/courses/111-10

borrowing from slides by Kurt Eiselt and Paul Carter

2

Midterm 2

■ raw scores average: 27/60
■ percentage scores scaled average: 66/100
■ exams back, solutions not distributed until

after correction lab in week 11

3

News: Reminder

■ change for labs
■ week 11 was no lab. now will be optional

midterm review/correction
■ a chance to work through your mistakes and

get some marks back
■ people with Monday (holiday) labs or conflicts

can attend another lab and/or work on their
own. anyone bring in corrected midterm at
beginning of the week 12 lab if not finished
working through during week 11 lab

4

Reading

■ Weeklies due today for this week

■ Next week:
■ 8.1-.9 (3rd ed)
■ 9.1-9.9 (2nd ed)

5

Recap: Method Overloading

■ Can have multiple methods of same name
■ Distinguishes between them with signature

■ method name, parameter types and order
■ Cannot have two methods with same

signature
■ Return type is not part of signature

■ Any method can be overloaded
■ constructors are very common case

6

Recap: Interfaces
■ Interface is collection of constants and abstract

methods
■ different meaning than set of public methods that

are documented, as in API
■ to implement interface must provide definitions

for all its methods
■ Abstract methods have no implementation or body

■ method header followed by semicolon
■ specifies how to communicate with method, not

what it does

7

Recap: Interface Example
public interface VendingMachine
{

 public void vendItem();

 public int getItemsRemaining();

 public int getItemsSold();

 public double getCashReceived();

 public void loadItems(int n);

}

public class CokeMachine2005 implements VendingMachine
{

8

Recap: Interface Syntax
■ Use reserved word interface instead of class in

header
■ no need to use reserved word abstract in method

headers, is automatic with interfaces

■ Use reserved word implements followed by
interface name in class header

9

Recap: Polymorphism

■ Polymorphism: behavior varies depending on
actual type of object
■ variables can be declared with interface as

type, can invoke interface methods on them
■ cannot construct interface

■ can only construct objects of some particular
class that implements interface

■ Polymorphism determined at runtime
■ vs. method overloading, determined at

compilation
10

Recap: Polymorphism Example
public class SimCoke2005
{
 public static void main (String[] args)
 {
 VendingMachine foo1 = new CokeMachine2005();
 VendingMachine foo2 = new FrenchFryMachine2005();

 foo1.vendItem();
 foo2.vendItem();
 }
}

Adding another CokeMachine to your empire
Adding another FrenchFryMachine to your empire
Have a Coke
9 cans remaining
Have a nice hot cup of french fries
9 cups of french fries remaining

11

Polymorphism
■ reference to interface type can reference instance of
any class implementing that interface
■ static type: type that variable declared to be

■ determines which members of class can be invoked
■ dynamic type: type that variable actually references

■ determines which version of method is called

12

Interfaces as Contract

■ Can write code that works on anything that
fulfills contract
■ even classes that don’t exist yet!

■ Example: Comparable
■ useful if you need to sort items
■ compareTo(object)

■ returns int < 0 if this object less than parameter
■ returns 0 if same
■ returns int > 0 if this object greater than

parameter

13

Comparable

■ sort method that works on array of objects of
any type that implements Comparable
■ type guaranteed to have compareTo method

■ we need to sort
■ Bunny
■ Giraffe
■ String
■ ...

14

Selection Sort For Int Primitives
// selection sort
public class SortTest1
{
 public static void main(String[] args)
 {
 int[] numbers = {16,3,19,8,12};
 int min, temp;
 //select location of next sorted value
 for (int i = 0; i < numbers.length-1; i++)
 {
 min = i;
 //find the smallest value in the remainder of
 //the array to be sorted
 for (int j = i+1; j < numbers.length; j++)
 {
 if (numbers[j] < numbers[min])
 {
 min = j;
 }
 }
 //swap two values in the array
 temp = numbers[i];
 numbers[i] = numbers[min];
 numbers[min] = temp;
 }

 System.out.println("Printing sorted result");
 for (int i = 0; i < numbers.length; i++)
 {
 System.out.println(numbers[i]);
 }
 }
}

15

Wrappers
■ Many classes implement Comparable interface

■ Byte, Character, Double, Float, Integer, Long, Short,
String

■ each implements own version of compareTo
■ Wrapper classes

■ wraps up (encapsulates) primitive type
■ Double: object wrapping primitive double

■ No: sort(double[] myData);
■ Yes: sort(Double[] myData);

16

Multiple Interfaces

■ Classes can implement more than one
interface at once
■ contract to implement all abstract methods

defined in every interface it implements

public class MyClass implements Interface1, Interface2,
Interface3

{
}

