
1

University of British Columbia
CPSC 111, Intro to Computation

2009W2: Jan-Apr 2010
Tamara Munzner

Interfaces, Polymorphism

Lecture 28, Wed Mar 24 2010

http://www.cs.ubc.ca/~tmm/courses/111-10

borrowing from slides by Kurt Eiselt

2

News

■ change for labs
■ week 11 was no lab. now will be optional

midterm review/correction
■ a chance to work through your mistakes and

get some marks back
■ people with Monday (holiday) labs or conflicts

can attend another lab and/or work on their
own. anyone bring in corrected midterm at
beginning of the week 12 lab if not finished
working through during week 11 lab

3

Reading

■ This week:
■ 9.1-9.3 (3rd ed)
■ 11.1-11.3 (2nd ed)

4

Recap: Favorite Colors

■ record everybody's favorite color
■ how can we do "averages" per row?

■ find the max
■ keep array of vote counts for each color, for

each row

5

Here's a puzzler...
How does System.out.println() accept different
data types as parameters?
public class PrintlnTest
{
 public static void main(String[] args)
 {
 int a = 7;
 double b = 3.14159;
 boolean c = false;
 String d = "woohoo!";
 System.out.println(a);
 System.out.println(b);
 System.out.println(c);
 System.out.println(d);
 }
}

> java PrintlnTest
7
3.14159
false
woohoo!

6

Here's a puzzler...
How does System.out.println() accept different
data types as parameters?
public class PrintlnTest
{
 public static void main(String[] args)
 {
 int a = 7;
 double b = 3.14159;
 boolean c = false;
 String d = "woohoo!";
 System.out.println(a);
 System.out.println(b);
 System.out.println(c);
 System.out.println(d);
 }
}

> java PrintlnTest
7
3.14159
false
woohoo!

7

Here's a puzzler...
How does System.out.println() accept different
data types as parameters?
public class PrintlnTest
{
 public static void main(String[] args)
 {
 int a = 7;
 double b = 3.14159;
 boolean c = false;
 String d = "woohoo!";
 System.out.println(a);
 System.out.println(b);
 System.out.println(c);
 System.out.println(d);
 }
}

In other words, why doesn't this blow up? Can you
construct a method that will accept different data types?

8

Method overloading
Java allows us to create methods with the same name but
different parameter lists. This is useful when you want to
perform similar operations on different types of data as
well as different numbers of parameters. This is called
method overloading.

9

Method overloading - different types
public class OverloadTest
{
 public static void main(String[] args)
 {
 int a = 7;
 boolean c = false;
 String d = "woohoo!";
 test(a);
 test(c);
 test(d);
 }

 public static void test(int x)
 {
 System.out.println("I am an integer.");
 }

 public static void test(boolean x)
 {
 System.out.println("Am I a boolean? Yes? No?");
 }

 public static void test(String x)
 {
 System.out.println("Aye, I'm a String and proud of it!");
 }
}

10

Method overloading - param list length
public class AvgTest
{
 public static void main(String[] args)
 {
 System.out.println(avg (10, 30, 20));
 System.out.println(avg(30,20));
 }

 public static double avg(double a, double b)
 {
 return ((a + b) / 2);
 }

 public static double avg(double a, double b, double c)
 {
 return ((a + b + c) / 3);
 }
}

11

Method overloading
When two or more methods have the same name, Java
uses the number of parameters, the types of the
parameters, and/or the order of the types of parameters to
distinguish between the methods.

The method's name, type, and order of its parameters is
called its signature. If you try to create two methods with
the same signature, the compiler will let you know.

12

Method overloading
public class AvgTest2
{
 public static void main(String[] args)
 {
 System.out.println(avg(30,20));
 }

 public static double avg(double a, double b)
 {
 return ((a + b) / 2);
 }

 public static double avg(double a, double b) // same signature
 {
 return ((a + b) / 2.0); // different logic
 }
}

13

Method overloading
public class AvgTest2
{
 public static void main(String[] args)
 {
 System.out.println(avg(30,20));
 }

 public static double avg(double a, double b)
 {
 return ((a + b) / 2);
 }

 public static double avg(double a, double b) // same signature
 {
 return ((a + b) / 2.0); // different logic
 }
}

1 error found:
File: AvgTest2.java [line: 13]
Error: avg(double,double) is already defined in AvgTest2

14

Method overloading
When two or more methods have the same name, Java
uses the number of parameters, the types of the
parameters, and/or the order of the types of parameters to
distinguish between the methods.

The method's name, type, and order of its parameters is
called its signature. If you try to create two methods with
the same signature, the compiler will let you know.

The return type is not part of the signature. That is, you
can't have two overloaded methods whose signatures
differ only by the return type. Why? There's no way for
Java to know from the method invocation which method
was intended to be used, and it's not going to choose one
at random, is it?

15

Method overloading
public class AvgTest3
{
 public static void main(String[] args)
 {
 System.out.println(avg(30,20));
 }

 public static double avg(double a, double b)
 {
 return ((a + b) / 2);
 }

 public static float avg(double a, double b) // same signature
 { // different return type
 return ((a + b) / 2);
 }
}

2 errors found:
File: AvgTest3.java [line: 13]
Error: avg(double,double) is already defined in AvgTest3
File: AvgTest3.java [line: 15]
Error: possible loss of precision
found : double
required: float

16

Constructor overloading
Can we overload constructor methods? Of course!
Here's our favourite program, the CokeMachine...
public class CokeMachine2
{
 private static int totalMachines = 0;
 private int numberOfCans;

 public CokeMachine2()
 {
 numberOfCans = 10;
 System.out.println("Adding another machine to your empire with "
 + numberOfCans + " cans of Coke");
 totalMachines++;
 }

17

 public static int getTotalMachines()
 {
 return totalMachines;
 }

 public int getNumberOfCans()
 {
 return numberOfCans;
 }

 public void buyCoke()
 {
 if (numberOfCans > 0)
 {
 numberOfCans = numberOfCans - 1;
 System.out.println("Have a Coke");
 System.out.print(numberOfCans);
 System.out.println(" cans remaining");
 }
 else
 {
 System.out.println("Sold Out");
 }
 }
}

Constructor overloading

18

public class CokeMachine2
{
 private static int totalMachines = 0;
 private int numberOfCans;

 public CokeMachine2()
 {
 numberOfCans = 10;
 System.out.println("Adding another machine to your empire with "
 + numberOfCans + " cans of Coke");
 totalMachines++;
 }

 public CokeMachine2(int n)
 {
 numberOfCans = n;
 System.out.println("Adding another machine to your empire with "
 + numberOfCans + " cans of Coke");
 totalMachines++;
 }

Constructor overloading

19

public class SimCoke2
{
 public static void main (String[] args)
 {
 System.out.println("Coke machine simulator");
 CokeMachine2 cs = new CokeMachine2();
 CokeMachine2 engr = new CokeMachine2(237);
 CokeMachine2 chan = new CokeMachine2(42);
 CokeMachine2 library = new CokeMachine2(9000);
 cs.buyCoke();
 engr.buyCoke();
 }
}

> java SimCoke2
Coke machine simulator
Adding another machine to your empire with 10 cans of Coke
Adding another machine to your empire with 237 cans of Coke
Adding another machine to your empire with 42 cans of Coke
Adding another machine to your empire with 9000 cans of Coke
Have a Coke
9 cans remaining
Have a Coke
236 cans remaining

Constructor overloading

20

Another vending-related opportunity
Let's say that you've been inspired by CPSC 111
and decide to create commercial vending-
machine simulation software. To make this work,
you'll need to accommodate vending machines
beyond those that sell only Coca-Cola products.

For example, you may want to include...

21

Pizza machines...

22

Beer machines...

23

...and even French fry machines!

24

Another vending-related opportunity
Furthermore, while recognizing that a pizza
machine is not the same as a beer machine is not
the same as a Coke machine, you'll want to take
advantage of the fact these two distinct types of
vending machines have much in common. How
can you do this? Here's one way...

25

Interfaces

Informally, we've used the word "interface" to refer to
the set of public methods (for example, getters and
setters) through which we interact with an object.

There's also a more formal use of the word interface
in Java. A Java interface is a collection of constants
and abstract methods.

26

Interfaces

An abstract method has no implementation...no body.
It's just a method header followed by a semicolon. It
specifies how one communicates with a method, but
not what the method does.

27

Interfaces
public interface VendingMachine
{

 public void vendItem();

 public int getItemsRemaining();

 public int getItemsSold();

 public double getCashReceived();

 public void loadItems(int n);

}

We create an interface by using the reserved word
interface in what would be the class header, if an
interface were a class (which it's not...think of it more
as the syntactic specification for a class).

28

Interfaces
public interface VendingMachine
{

 public abstract void vendItem();

 public abstract int getItemsRemaining();

 public abstract int getItemsSold();

 public abstract double getCashReceived();

 public abstract void loadItems(int n);

}

We could use the reserved word abstract in the
abstract method headers, but we don't have to
because the methods in an interface must be
abstract.

29

Interfaces

An interface is not a class. An interface only
prescribes what methods some other class or classes
must have. That is, an interface specifies the
headings for methods that must be defined in any
class that implements the interface, but it doesn't say
what happens inside the methods.

from Absolute Java by Walter Savitch.

30

Implementing an interface

A class implements an interface by providing method
implementations for each of the abstract methods
defined in the interface. A class that implements an
interface uses the reserved word implements
followed by the interface name in the class header.

31

Implementing an interface
public class CokeMachine2005 implements VendingMachine
{
 private int itemsRemaining;
 private int itemsSold;
 private double cashReceived;

 public CokeMachine2005()
 {
 itemsRemaining = 10;
 itemsSold = 0;
 cashReceived = 0;
 System.out.println("Adding another CokeMachine to your empire");
 }

 public int getItemsRemaining()
 {
 return itemsRemaining;
 }

 public int getItemsSold()
 {
 return itemsSold;
 }

32

Implementing an interface
 public double getCashReceived()
 {
 return cashReceived;
 }

 public void loadItems(int n)
 {
 itemsRemaining += n;
 }

 public void vendItem()
 {
 if (itemsRemaining > 0)
 {
 itemsRemaining = itemsRemaining - 1;
 itemsSold++;
 cashReceived = cashReceived + 1.25;
 System.out.println("Have a Coke");
 System.out.print(itemsRemaining);
 System.out.println(" cans remaining");
 }
 else
 {
 System.out.println("Sold out.");
 }
 }
}

33

Implementing an interface
public class FrenchFryMachine2005 implements VendingMachine
{
 private int itemsRemaining;
 private int itemsSold;
 private double cashReceived;

 public FrenchFryMachine2005()
 {
 itemsRemaining = 10;
 itemsSold = 0;
 cashReceived = 0;
 System.out.println("Adding another FrenchFryMachine to your empire");
 }

 public int getItemsRemaining()
 {
 return itemsRemaining;
 }

 public int getItemsSold()
 {
 return itemsSold;
 }

34

Implementing an interface
 public double getCashReceived()
 {
 return cashReceived;
 }

 public void loadItems(int n)
 {
 itemsRemaining += n;
 }

 public void vendItem()
 {
 if (itemsRemaining > 0)
 {
 itemsRemaining = itemsRemaining - 1;
 itemsSold++;
 cashReceived = cashReceived + 1.00;
 System.out.println("Have a nice hot cup of french fries");
 System.out.print(itemsRemaining);
 System.out.println(" cups of french fries remaining");
 }
 else
 {
 System.out.println("Sold out.");
 }
 }
}

35

Implementing an interface

For a class to implement an interface, it must provide
a definition for all methods in the interface. If there
are unimplemented methods, the class must be
declared to be an abstract class, but that's a topic for
another time.

36

What do these relationships look like?

Generic
Vending
Machine

Coke
Machine

French Fry
Machine

Pizza
Machine

Beer
Machine

37

Why this stuff is very very cool*

Because an object of a class that implements an
interface is also an object of that interface type. That
concept is the basis of an important object-oriented
programming principle called polymorphism.

Polymorphism is derived from the word fragment poly
and the word morpho in Greek, and it literally means
"multiple forms".

*assuming you come from the planet Nerdtron

38

Why this stuff is very very cool

Polymorphism simplifies the processing of various
objects in the same class hierarchy by using the
same method call for any object in the hierarchy. We
make the method call using an object reference of
the interface. At run time, the Java Virtual Machine
determines which class in the hierarchy the object
actually belongs to and invokes the version of the
method implemented for that class.

from Java 5 Illuminated by Anderson and Franceschi

39

Why this stuff is very very cool
public class SimCoke2005
{
 public static void main (String[] args)
 {
 VendingMachine foo1 = new CokeMachine2005();
 VendingMachine foo2 = new FrenchFryMachine2005();

 foo1.vendItem();
 foo2.vendItem();
 }
}

Adding another CokeMachine to your empire
Adding another FrenchFryMachine to your empire
Have a Coke
9 cans remaining
Have a nice hot cup of french fries
9 cups of french fries remaining

40

Why this stuff is very very cool
public class SimCoke2005
{
 public static void main (String[] args)
 {
 VendingMachine foo1 = new CokeMachine2005();
 VendingMachine foo2 = new FrenchFryMachine2005();

 foo1.vendItem();
 foo2.vendItem();
 }
}

The little foos may look like VendingMachine objects
to you and me, but Java knows the difference and
finds the appropriate method for each foo. That
makes our programming job a lot easier to do. Why?

41

Why this stuff is very very cool

if we want to vend an item from foo1 and foo1 is a CokeMachine2005
then print "have a Coke" else
if we want to vend an item from foo1 and foo1 is a FrenchFryMachine2005
then print "have a cup of french fries" else
if we want to vend an item from foo1 and foo1 is a PizzaMachine2005
then....

Because the alternative is to write lots of chunks of
code that look like sort of like this (if they were written
in English):

As the number of classes within the same hierarchy
grows, so does the size of the chunks of code
represented above. Eeyow!

42

Interface caution

Can’t construct interface

Can only construct objects that belong to some class

