
1

University of British Columbia
CPSC 111, Intro to Computation

2009W2: Jan-Apr 2010
Tamara Munzner

Yet More Array Practice

Lecture 24, Mon Mar 15 2010

http://www.cs.ubc.ca/~tmm/courses/111-10

borrowing from slides by Kurt Eiselt

2

Reading: CORRECTION!

■ This week: Sorting and Searching
■ 14.1 and 14.3 in 3rd edition
■ (19.1 and 19.3 in 2nd edition)
■ so weekly question is indeed required!

■ course web page has also been updated

3

Midterm 2

■ Midterm 2: Mon Mar 22, 6:30pm
■ FSC 1005 again
■ hour-long exam, reserve 6:30-8 time slot

■ for buffer in case of fire alarms etc
■ coverage: through arrays (Chap 8)

■ includes/builds on material covered in
previous midterm

■ study tips - same as before!
■ write and test programs, not just read book

■ try programming exercises from book

4

Reading through Midterm, 3rd edition

■ 1.1-1.8
■ 2.1-2.10
■ 3.1-3.8
■ 4
■ 5.1-5.4
■ 6.1-6.5
■ 7.1,7.5-7.7
■ 14.1,14.3

■ see course page for 2nd edition list

5

Recap: Arrays of Arrays = 2D Arrays

■ 2D array often easier to think about
■ Internally, 2D arrays implemented as arrays of arrays in Java

■ they’re equivalent

0
1
2
3

 0 1 2

0 0 0
0 1 2
0 2 4
0 3 6

rows

columns

0
1
2
3

0 0
1 0
2 0

0 0
1 1
2 2

0 0
1 2
2 4

0 0
1 3
2 6

array of arrays 2D array

6

Recap: 2D Array Access Patterns
■ Print average score for each student

■ for each row of scores
■ add up scores
■ divide by number of quizzes

■ length of row

0
1
2
3
4

95 82 13 96
51 68 63 57
73 71 84 78

50 50 50 50

99 70 32 12

 scores

 0 1 2 3

 rows: students

cols: quizzes

for (int row = 0; row < scores.length; row++) {
 double average = 0;
 for (int col = 0; col < scores[row].length; col++) {
 average = average + scores[row][col];
 }
 average = average / scores[row].length;
}

for (int col = 0; col < scores[0].length; col++) {
 double average = 0;
 for (int row = 0; row < scores.length; row++) {
 average = average + scores[row][col];
 }
 average = average / scores.length;
}

■ Print average score for each quiz
■ for each column of scores

■ add up scores
■ divide by number of students

■ length of column

7

Recap: Per-Student Averages
public class ArrayEx4
{
 public static void main(String[] args)
 {
 double[][] scores = {{95, 82, 13, 96},
 {51, 68, 63, 57}, {73, 71, 84, 78}, {50, 50, 50, 50},
 {99, 70, 32, 12}};
 double average;

 // here's where we control looping row by row (student by student)
 for (int row = 0; row < scores.length; row++)
 {
 average = 0;
 // and here's where we control looping through the columns
 // (i.e., quiz scores) within each row
 for (int col = 0; col < scores[row].length; col++)
 {
 average = average + scores[row][col];
 }
 average = average / scores[row].length;
 System.out.println("average of row " + row + " is " + average);
 }
 }
}

8

Recap: Selection Sort

 3

 8

19

16

12

 0

 1

 2

 3

 4

The smallest value
so far is 12

Its index is 4

■ Start at beginning
■ Consider unsorted array elements: beyond

current spot
■ Find smallest element
■ Swap with current spot
■ Move down by one

9

■ now that we know 2D, we can do nD!
■ any number of dimensions: 3D, 4D…

■ up to 127D, actually
■ example: student quiz scores over multiple

terms
■ row: students
■ col: quiz scores
■ stack: term

■ let's try it!

Multidimensional Arrays

95 82 13 96
51 68 63 57
73 71 84 78

50 50 50 50

99 70 32 12

04-05 Term1

04-05 Term2

05-06 Term1

05-06 Term2

10

Now for the good stuff

 Computer science folks don't spend all their time writing programs.
They're also concerned with the efficiency of those programs and their
underlying algorithms. Efficiency can be expressed in terms of either
time or memory needed to complete the task. In the case of sorting
algorithms, we're typically interested in how much time it takes to sort.

So let's try to get some sense of the time requirements of selection sort.
We don't use a stopwatch...instead, we use mathematics. The
fundamental operation in sorting is the comparison to see if one value is
less than the other, and the time required to sort corresponds to the
number of comparisons that must be made to complete the sorting.

11

Estimating time required to sort

16

 3

19

 8

12

 0

 1

 2

 3

 4

We can go back to the selection sort example and count
the comparisons. The first pass through the array of 5
elements started with 16 being compared to 3, then 3
was compared to 19, 8, and 12. There were 4
comparisons. The value 3 was moved into the location
at index 0.

12

Estimating time required to sort

 3

16

19

 8

12

 0

 1

 2

 3

 4

We can go back to the selection sort example and count
the comparisons. The first pass through the array of 5
elements started with 16 being compared to 3, then 3
was compared to 19, 8, and 12. There were 4
comparisons. The value 3 was moved into the location
at index 0. Then the second pass through the array
began, starting with index 1. 16 was compared to 19,
then 16 was compared to 8, which became the new
minimum and was compared to 12. So among 4
elements in the array, there were 3 comparisons.

13

Estimating time required to sort

 3

 8

12

16

19

 0

 1

 2

 3

 4

It takes 4 passes through the array to get it completely
sorted. There are 4 comparisons on the first pass, 3
comparisons on the second pass, 2 comparisons on the
third pass, and 1 comparison on the last pass. That is, it
takes 4 + 3 + 2 + 1 = 10 comparisons to sort an array of
five values.

If you do this same computation on an array with six
values, you'll find it takes 5 + 4 + 3 + 2 + 1 = 15
comparisons to sort the array. Do you see a pattern?

With a little math, you can figure out that the number of
comparisons required to perform selection sort on an
array of N values is given by the expression: N*(N-1)/2
or (N2-N)/2

14

Estimating time required to sort

 Either way, it should be easy to see that as N, the number of values in
the array gets very big, the number of comparisons needed to sort the
array grows in proportion to N2, with the other terms becoming
insignificant by comparison.

So sorting an array of 1,000 values would require approximately
1,000,000 comparisons. Similarly, sorting an array of 1,000,000 values
would take approximately 1,000,000,000,000 comparisons.

As the number of values to be sorted grows, the number of comparisons
required to sort them grows much faster. Fortunately, there are other
sorting algorithms that are much less time-consuming, but we won't be
talking about them in this class. In the meantime, here are some real
numbers to help you think about just how long it might take to sort some
really big arrays...

15

Estimating time required to sort

 Let's assume that your computer could make 1 billion (1,000,000,000)
comparisons per second. That's a lot of comparisons in a second. And
let's say your computer was using selection sort to sort the names of the
people in the following hypothetical telephone books. Here's some
mathematical food for thought.

phone book number of N2 number of
 people (N) seconds needed
 to sort

16

Estimating time required to sort

 Let's assume that your computer could make 1 billion (1,000,000,000)
comparisons per second. That's a lot of comparisons in a second. And
let's say your computer was using selection sort to sort the names of the
people in the following hypothetical telephone books. Here's some
mathematical food for thought.

phone book number of N2 number of
 people (N) seconds needed
 to sort

Vancouver 544,320 296,284,262,400 296 or 5 minutes

17

Estimating time required to sort

 Let's assume that your computer could make 1 billion (1,000,000,000)
comparisons per second. That's a lot of comparisons in a second. And
let's say your computer was using selection sort to sort the names of the
people in the following hypothetical telephone books. Here's some
mathematical food for thought.

phone book number of N2 number of
 people (N) seconds needed
 to sort

Vancouver 544,320 296,284,262,400 296 or 5 minutes

Canada 30,000,000 900,000,000,000,000 900,000 or 10.4 days

18

Estimating time required to sort

 Let's assume that your computer could make 1 billion (1,000,000,000)
comparisons per second. That's a lot of comparisons in a second. And
let's say your computer was using selection sort to sort the names of the
people in the following hypothetical telephone books. Here's some
mathematical food for thought.

phone book number of N2 number of
 people (N) seconds needed
 to sort

Vancouver 544,320 296,284,262,400 296 or 5 minutes

Canada 30,000,000 900,000,000,000,000 900,000 or 10.4 days

People's Republic 1,000,000,000 1,000,000,000,000,000,000 1,000,000,000 or 31.7 years
of China

19

Estimating time required to sort

 Let's assume that your computer could make 1 billion (1,000,000,000)
comparisons per second. That's a lot of comparisons in a second. And
let's say your computer was using selection sort to sort the names of the
people in the following hypothetical telephone books. Here's some
mathematical food for thought.

phone book number of N2 number of
 people (N) seconds needed
 to sort

Vancouver 544,320 296,284,262,400 296 or 5 minutes

Canada 30,000,000 900,000,000,000,000 900,000 or 10.4 days

People's Republic 1,000,000,000 1,000,000,000,000,000,000 1,000,000,000 or 31.7 years
of China

World 6,000,000,000 36,000,000,000,000,000,000 36,000,000,000 or 1142 years

20

Favorite Colors

■ record everybody's favorite color
■ how can we do "averages" per row?

