
1

University of British Columbia
CPSC 111, Intro to Computation

2009W2: Jan-Apr 2010
Tamara Munzner

Hardware, Memory, Languages

Lecture 2, Wed Jan 6 2010

http://www.cs.ubc.ca/~tmm/courses/111-10

borrowing from slides by Kurt Eiselt, Wolfgang Heidrich,
Alan Hu

2

News
■ reminder: no class next time: this Friday Jan 8!

■ UBC CS news

3

Department of Computer Science
Undergraduate Events

Events this week
How to Prepare for the Tech

Career Fair
Date: Wed. Jan 6
Time: 5 – 6:30 pm
Location: DMP 110

Resume Writing Workshop (for
non-coop students)

Date: Thurs. Jan 7
Time: 12:30 – 2 pm
Location: DMP 201

CSSS Movie Night
Date: Thurs. Jan 7
Time: 6 – 10 pm
Location: DMP 310
Movies: “Up” & “The

Hangover” (Free Popcorn &
Pop)

Drop-In Resume Edition Session
Date: Mon. Jan 11
Time: 11 am – 2 pm
Location: Rm 255, ICICS/CS Bldg

Industry Panel
Speakers: Managers from Google,

IBM, Microsoft, TELUS, etc.
Date: Tues. Jan 12
Time: Panel: 5:15 – 6:15 pm;

Networking: 6:15 – 7:15 pm
Location: Panel: DMP 110;
 Networking: X-wing Undergrad

Lounge

Tech Career Fair
Date: Wed. Jan 13
Time: 10 am – 4 pm
Location: SUB Ballroom

4

Reading This Week
■ Ch 1.1 - 1.2: Computer Anatomy

5

Correction / Recap: Prerequisites

■ Mathematics 12 is the prerequisite
■ or any math course at UBC
■ if you have not taken it you will be dropped from the course
■ see CS advisors if you need prerequisite waived because of

equivalent work
■ current stuff

■ you cannot get credit for both 111 and new 110 course
■ you cannot get credit for 101 if you take it after or concurrently

with 111
■ you CAN get credit for 111 if you take it after 101!

6

Recap: Processes, Procedures, and Programs

■ process: what happens when a computer follows a
procedure - it’s a procedure in execution

■ procedure: collection of instructions in some
meaningful order that results in useful behavior on
behalf of the device that executes the instructions

■ program: when instructions are written in symbolic
language that can be executed by a computer

7

Here’s why we get frustrated when we start to learn
to write programs to make computers do stuff:

An algorithm is

 • a finite procedure
 • written in a fixed symbolic vocabulary
 • governed by precise instructions
 • moving in discrete steps, 1, 2, 3, ...
 • whose execution requires no insight, cleverness,
 intuition, intelligence, or perspicuity
 • and that sooner or later comes to an end

We don’t have a lot of practice at being stupid!

Recap: Procedures and Algorithms

8

Why Being Precise/Stupid Isn’t Easy
■ human languages are very different from computer

languages: they’re ambiguous
■ humans bring huge amounts of knowledge to understanding

meaning of sentence
■ we apply it automatically and unconsciously

■ many meanings per word
■ sentence structure
■ context of conversation
■ how the world workd
■ how language is used

■ you count on listener to disambiguate without even noticing
■ we can get away with relatively short and imprecise sentences

9

Why Being Precise/Stupid Isn’t Easy
■ imagine a world where there is no ambiguity

■ that’s computer programming!

■ everyone starts out imprecise
■ everyone gets frustrated while learning this stuff

■ you are not alone
■ you can succeed at this

10

Physical Hardware
■ “Computer science is how to harness the physical

world to help us think.” - Alan Hu

■ harnessing the physical world to help us think
■ how to get things that have computational behavior?
■ technology dependent:

■ sticks, gears, relays, vacuum tubes, transistors,
DNA,...

■ how to control that behavior to do interesting things

11

Computer Design
■ it’s hard to figure out how to make things do

computation
■ all digital computers for over 50 years have had:

■ same basic organization
■ binary representation of data
■ numerically addressed memory
■ fetch-decode-execute operation cycle

■ we’ll only have a brief glance here

12

Introduction to Computer Hardware
■ Objectives:

■ to identify and explain the purpose of core hardware
components

■ to understand the way data is represented in
memory

■ Understanding the hardware that runs our programs
can help us understand the programs' behavior,
especially when they misbehave.

13

Computer Hardware Overview

14

Computer Hardware Overview

15

Binary Data Representation
■ All programs and data on a computer are

represented using only symbols 0 and 1
■ This simple binary system is encoded in all of our

digital hardware devices:
■ Magnetic disks: magnetic material can be polarized

to one of two extremes (north or south) to represent
a 0 or a 1.

■ Memory: each byte consists of 8 bits; each bit is a
kind of electronic switch that is either off or on
representing a 0 or a 1.

16

Memory
■ Some of computer programming is resource management

■ As beginning programmers, the resource that you’ll be
concerned with most is memory
■ Most programming languages do a lot of the work for you

■ More on this soon

17

5802
5803
5804
5805
5806
5807

Data values are
stored in memory
locations – more
than one location
may be used if the
data is large.

10110101

Address

10110101

Memory
■ Memory consists of a series of locations, each having a

unique address, that are used to store programs and data.
■ When data is stored in a memory location, the data that was

previously stored there is overwritten and destroyed.
■ Each memory location stores one byte (or 8 bits) of data.

■ Each bit is a 0 or a 1
■ More on this soon

18

Memory

19

We measure units of memory in terms of bytes:

240 = 10244TBterabyte

230 = 10243GBgigabyte

220 = 10242MBmegabyte

210 = 1024KBkilobyte

20 = 1byte (8 bits)

of bytesSymbolUnit

Units of Memory Storage

20

What Can Be Represented By A Byte?
■ 256 different characters from your keyboard

■ Java actually uses 2 bytes to represent a character
■ how many characters is that?

■ 256 different shades of gray in a black and white image

■ 256 colors or shades of color in a color image

■ 256 frequencies or tones to be played through a speaker

■ 256 of anything that can be represented as discrete entities

■ part of an instruction for a computer

21

 Macintosh SE in 1987
1 megabyte (MB) of memory

 MacBook Pro in 2008
2 gigabytes (GB) of memory

1000 times more memory capacity in 20 years
1000 times greater processing speed
Approximately the same price

Memory

22

A disk drive without its protective case

Mass storage/long-term memory

23

Central processing unit

24

fetch

decodeexecute

Central processing unit
■ CPU executes instructions in a continuous cycle

■ known as the “fetch-decode-execute” cycle
■ CPU has dedicated memory locations known as registers

■ One register, the program counter, stores the address in
memory of the next instruction to be executed

25

Central processing unit

26

Central processing unit

27

Instructions
■ Implication of the fetch-decode-execute cycle

■ we control the computer to make it do what we want
by giving it a sequence of little steps for it to do

■ these steps are the instructions in a programming
language

28

Programming Languages
■ Objectives

■ Understand what is meant by computer
programming.

■ Understand the difference between
machine/assembly language and a high-level
computer language.

■ Understand what compilers and interpreters are,
and why we use them.

■ Write, compile, and run a simple Java program.

29

What is Computer Programming?

30

What is a Computer?
How is a computer different from a video game
console? Or a DVD player? Or a telephone? Or a
bank machine?

31

What is a Computer?
How is a computer different from a video game
console? Or a DVD player? Or a telephone? Or a
bank machine?

The computer is general. It can be all of the other
devices.

Making the computer do what we want is called
programming the computer.

32

Input Devices Output Devices

Central Processing Unit

Memory

Mass Storage Devices

Computer Programming

Computer
Program

33

Computer Programming
■ You can make the computer do anything that it’s

capable of. The only limits are space, time, I/O
devices, and your skill and creativity

■ It takes work.
■ The biggest program you’ll write in 111 will be a few

hundred lines long.
■ Windows XP is 40 million lines long.

■ You have to write in a language the computer
understands.

34

George and Stephen go to France
■ George is American. He knows only English.
■ Stephen is Canadian. He is bilingual in English and

French.
■ How can George communicate in France?

35

George and Stephen go to France
■ How can George communicate in France?

1. If he wants to communicate quickly, then Stephen
can interpret – translating French to English and
English to French on-the-fly.

2. If there’s a lot of stuff to translate (e.g., a speech,
or a long document), then Stephen can translate
the whole thing at once. Now, George can read it
whenever he wants.

36

George and Stephen go to France
Translations can be combined:

In the Louvre, they see inscriptions in Egyptian
hieroglyphics.

A museum sign gives a French translation.

Stephen interprets the sign for George.

George can understand the hieroglyphics.

37

Health Education in Remote Areas
■ In remote areas of the world, there are languages spoken by

small groups of people, and also a national language spoken
by the mainstream, e.g.,:
■ Many native languages vs. Spanish in Latin America
■ Minority languages vs. Mandarin in China
■ Regional languages vs. Hindi or English in India

■ How do you provide health info (e.g., in English) to the
isolated (e.g., in Latin America)?

38

Health Education in Remote Areas

Original Info
(English)

Localized
Field Manual

(Spanish)

Nahuatl Speaker Maya Speaker Zapoteco Speaker

Local
Interpreter

Local
Interpreter

Local
Interpreter

English-
Spanish

Translation

39

Machine Language
■ This is the “native language” of a computer.
■ Each instruction does very little.
■ The computer does them very fast.
■ Each kind of processor has its own machine

language, e.g.:
■ x86 (Intel, AMD), Windows and new Apples
■ PowerPC (Freescale, IBM), older Apples
■ SPARC (Sun), used in Sun servers
■ Many more…

■ Remember: Everything is in binary!

40

Machine Language
■ First programming languages: machine languages

■ Most primitive kind

■ Sample machine language instruction

■ what do you suppose it means?

41

Machine Language
■ First programming languages: machine languages

■ most primitive kind

■ Sample machine language instruction
■ Register: special purpose memory location inside CPU

where real computation occurs

00000000001000100011000000100000
add what’s to what’s and put it unimportant details for us
 in this in this in this
 register register register

42

Digital Equipment Corporation PDP11/05 (circa 1974)

Machine Language

43

Machine Language
■ First programming languages: machine languages

■ Most primitive kind

■ Sample machine language instruction
■ Register: special purpose memory location inside CPU

where real computation occurs

■ Difficult to write programs this way
■ People created languages that were more readable

00000000001000100011000000100000
add what’s to what’s and put it unimportant details for us
 in this in this in this
 register register register

44

Assembly Language
■ Next: assembly languages

■ Direct mappings of machine language instructions
into helpful mnemonics, abbreviations

■ Sample assembly language instruction
■ Corresponds to machine language instructions

add r1,r2,r6

00000000001000100011000000100000
add what’s to what’s and put it unimportant details for us
 in this in this in this
 register register register

45

Aside – Binary vs. Decimal Numbers

■ We are used to representing numbers in the
decimal system

■ have digits 0, 1, 2, 3, 4, 5, 6, 7, 8, 9
■ For example:

 4763
■ Means (read above number right to left):

 3*100+6*101+7*102+4*103

■ Note how the exponents count up from 0!

46

Aside – Binary vs. Decimal Numbers
■ With binary numbers, we use 2 as the base

■ have digits 0,1
■ Example:

 10010111
■ Means:

 1*20+1*21+1*22+0*23+1*24+0*25+0*26+1*27

 = 1+2+4+16+128 = 151
■ We have just converted a binary number to decimal
■ more details, decimal to binary conversion in CPSC 121

47

Aside – Other Bases
■ The same principle works for other bases
■ For example, hexadecimal (base 16)

■ uses digits 0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F
■ A-F correspond to values 10-15

■ Example:
 C350

■ Means:
 0*160 + 5*161 + 3*162 + 12*163

 = 5*16 + 3*256 + 12*4096 = 50,000

48

Assembly Language
■ Assembly language program converted into

corresponding machine language instructions by
another program called an assembler

add r1,r2,r6

00000000001000100011000000100000
add what’s to what’s and put it unimportant details for us
 in this in this in this
 register register register

assembler
assembly language machine language

49

Assembly Language
■ Both machine and assembly languages pose big challenges

for programmers
■ Difficult to read and write
■ Difficult to remember

■ Each instruction does very little
■ Takes lots of instructions just to get something simple done

■ Every machine or assembly language good for only one type
of computer
■ Different to program IBM than Honeywell than Burroughs...

50

High-Level Language
■ Next step: development of high-level languages

■ You may have heard of some
■ Fortran, COBOL, Lisp, BASIC, C, C++, C#, Ada, Perl, Java,

Python, Ruby, Javascript

■ High-level languages intended to be easier to use
■ still a long way from English.

■ A single high-level instruction gets more work done than a
machine or assembly language instruction.

■ Most high-level languages can be used on different
computers

51

Java
■ Java is the high-level language we’ll use.

■ Modern, widely used, portable, safe.

■ Developed by Sun in early 1990s
■ Originally intended for set-top boxes
■ Retargeted for the Web

52

High-Level Language
■ Example of a high-level instruction

■ A = B + C

■ Tells computer to
■ go to main memory and find value stored in location called B
■ go to main memory and find value stored in location called C
■ add those two values together
■ store result in memory in location called A

53

High-Level Language
■ Must be translated into machine language so the computer

can understand it.

■ High-level instruction: A = B + C
becomes at least four machine language instructions!

■ How?
■ You could translate it as you go (interpreter).
■ You could translate it in advance (compiler).

00010000001000000000000000000010 load B
00010000010000000000000000000011 load C
00000000001000100011000000100000 add them
00010100110000000000000000000001 store in A

54

Interpreters and Compilers
■ An interpreter translates the high-level language

into machine language on-the-fly, executing the
instructions as it goes.

■ A compiler translates the high-level language
program all at once in advance.

■ Both compilers and interpreters are themselves
computer programs.

■ Which is better?
■ Remember George and Stephen in France?

55

Java Does Both!

Your Program.java
(Java)

Your Program.class
(Java Bytecodes)

Windows PC Macintosh SPARC Server

java
JVM on Unix

java
JVM on Windows

java
JVM on MacOS

javac
Compiler

56

A Simple Java Program
// Our first Java program.
/* Traditionally, one’s first program in a new

language prints out “Hello, World!”
*/
class HelloTester {

public static void main(String[] args) {
System.out.println(“Hello, World!”);

}
}

57

Sample Java Application Program
//***
// Oreo.java Author: Kurt Eiselt
//
// Demonstrating simple Java programming concepts while
// revealing one of Kurt's many weaknesses
//***

public class Oreo
{
 //***
 // demand Oreos
 //***
 public static void main (String[] args)
 {
 System.out.println ("Feed me more Oreos!");
 }
}

