
1

University of British Columbia
CPSC 111, Intro to Computation

2009W2: Jan-Apr 2010
Tamara Munzner

More Class Design

Lecture 13, Wed Feb 3 2010

http://www.cs.ubc.ca/~tmm/courses/111-10

borrowing from slides by Paul Carter and Steve Wolfman

2

Reminder: Lab Schedule Change
■ no labs next week Feb 8-12
■ TAs will hold office hours in labs during Monday lab

times to answer pre-midterm questions
■ Mon Feb 8 11am - 3pm ICICS 008

■ labs resume after break
■ staggered to ensure that even Monday morning labs

have seen material in previous week's lecture

3

Recap: Refined UML Design for Point
■ refined design for 2D point class

Point

- x: double

+ Classname(inX: double, inY: double)

+ distanceBetween(Point otherPoint): double

+ getX(): double

+ getY(): double

+ distanceToOrigin(): double

- y: double

4

Recap: Point Class Ideas
■ continued testing after first victory

■ negative vs positive values
■ double vs integer values
■ check distance between same point is zero

■ avoided duplication of code
■ for distanceToOrigin we created new Point

representing origin, and used distanceBetween
■ versus cut/paste + tweaking

■ cannot initialize fields by having parameter names
in constructor match field names

5

Formal vs. Actual Parameters
■ formal parameter: in declaration of class
■ actual parameter: passed in when method is called

■ variable names may or may not match
■ if parameter is primitive type

■ call by value: value of actual parameter copied into
formal parameter when method is called

■ changes made to formal parameter inside method
body will not be reflected in actual parameter value
outside of method

■ if parameter is object: covered later

6

Scope
■ Fields of class are have class scope: accessible to

any class member
■ in Die and Point class implementation, fields

accessed by all class methods
■ Parameters of method and any variables declared

within body of method have local scope: accessible
only to that method
■ not to any other part of your code

■ In general, scope of a variable is block of code
within which it is declared
■ block of code is defined by braces { }

7

Point Final Testing/Refinement
■ check questions we noted in comments along the

way
■ clean up and comment

8

Commenting Code
■ Conventions

■ explain what classes and methods do
■ plus anywhere that you've done something

nonobvious
■ often better to say why than what

■ not useful
int wishes = 3; // set wishes to 3

■ useful
int wishes = 3; // follow fairy tale convention

9

javadoc Comments
■ Specific format for method and class header comments

■ running javadoc program will automatically generate HTML
documentation

■ Rules
■ /** to start, first sentence used for method summary
■ @param tag for parameter name and explanation
■ @return tag for return value explanation
■ other tags: @author, @version
■ */ to end

■ Running
 % javadoc Die.java
 % javadoc *.java

10

javadoc Method Comment Example
/**
 Sets the die shape, thus the range of values it can roll.
 @param numSides the number of sides of the die
*/
public void setSides(int numSides) {
 sides = numSides;
}

/**
 Gets the number of sides of the die.
 @return the number of sides of the die
*/
public int getSides() {
 return sides;
}

11

javadoc Class Comment Example
/** Die: simulate rolling a die
 * @author: CPSC 111, Section 206, Spring 05-06
 * @version: Jan 31, 2006
 *
 * This is the final Die code. We started on Jan 24,
 * tested and improved in on Jan 26, and did a final
 * cleanup pass on Jan 31.
 */

12

Cleanup Pass
■ Would we hand in our code as it stands?

■ good use of whitespace?
■ well commented?

■ every class, method, parameter, return value
■ clear, descriptive variable naming conventions?
■ constants vs. variables or magic numbers?
■ fields initialized?
■ good structure?
■ follows specification?

■ ideal: do as you go
■ commenting first is a great idea!

■ acceptable: clean up before declaring victory

13

Key Topic Summary

■ Generalizing from something concrete
■ fancy name: abstraction

■ Hiding the ugly guts from the outside
■ fancy name: encapsulation

■ Not letting one part ruin the other part
■ fancy name: modularity

■ Breaking down a problem
■ fancy name: functional decomposition

