
1

University of British Columbia
CPSC 111, Intro to Computation

2009W2: Jan-Apr 2010
Tamara Munzner

More Class Design

Lecture 12, Mon Feb 1 2010

http://www.cs.ubc.ca/~tmm/courses/111-10

borrowing from slides by Paul Carter and Steve Wolfman

2

Department of Computer Science
Undergraduate Events

Events this week

Resume Editing Drop-In Session
Date: Mon., Feb 1
Time: 11 am – 2 pm
Location: Rm 255, ICICS/CS

EADS Info Session
Date: Mon., Feb 1
Time: 3:30 – 5:30 pm
Location: CEME 1202

Job Interview Practice Session (for
non-coop students)

Date: Tues., Feb 2
Time: 11 am – 1 pm
Location: Rm 206, ICICS/CS

RIM Info Session
Date: Thurs., Feb 4
Time: 5:30 – 7 pm
Location: DMP 110

Events next week

Finding a Summer Job or Internship
Info Session

Date: Wed., Feb 10
Time: 12 pm
Location: X836

Masters of Digital Media Program
Info Session

Date: Thurs., Feb 11
Time: 12:30 – 1:30 pm
Location: DMP 201

3

Reminders
■ Assignment 1 due Wed 5pm
■ TA office hours in DLC

■ http://www.cs.ubc.ca/ugrad/current/resources/cslearning.shtml

■ my office hours 4-5pm today in X661

4

News: Lab Schedule Change
■ no labs next week Feb 8-12
■ TAs will hold office hours in labs during Monday lab

times to answer pre-midterm questions
■ Mon Feb 8 11am - 3pm ICICS 008

■ labs resume after break
■ staggered to ensure that even Monday morning labs

have seen material in previous week's lecture

5

Midterm Coverage
■ reading: chapters 1-4
■ lectures: weeks 0-4

■ through this Friday 2/5
■ topics:

■ intro, hardware background,
programming languages, comments, identifiers,
whitespace, errors, variables, primitive data types,
assignment, casting, constants, objects, classes,
strings, input, class design

■ assignments:
■ assignment 1

6

Midterm Format
■ closed book, no notes, no calculators
■ must bring ID, put in front of you face up so we can

see picture and name
■ 6:30 Monday 2/8, FSC 1005

■ exam starts at 6:30, please arrive before that
■ you will have 60 minutes to do the exam
■ do not turn over or open exam until we say to begin

7

Midterm Advice
■ good to read book, but definitely don't stop there!
■ best thing to do: practice programming

■ try exercises in Big Java
■ solutions for some practice problems now posted in

new Handy Links folder on WebCT Vista
■ and/or invent your own problems!
■ do a mix of programming on the computer, and on

paper
■ you will only have paper for the exam

8

Reading Assignment This Week
■ Chap 4.3-4.5 re-read

9

Recap: UML Visual Syntax
■ + for public, - for private
■ fields above, methods below

Classname

fields

methods

+ field: type

- method(): return type

+ Classname()

+ method(): return type

+ method(param1 type,
param2 type): return
type

- field: type

10

Recap: Control Flow Between Modules
■ Two weeks ago it was easy to understand control

flow: order in which statements are executed
■ march down line by line through file

■ Now consider control flow between modules

int rollResult;

myDie.setSides();

rollResult = myDie.roll();

public int roll()
{
 …
}

public void setSides()
{
 …
}

Client code Die class methods

11

Recap: UML Design for Point

■ preliminary design for 2D point class

Classname

fields

methods

- x: double

+ Classname(inX:
double, inY: double)

+ distanceBetween(Point
otherPoint): double

- y: double

12

Continuing: Implementing Point
public class Point {

}

13

Formal vs. Actual Parameters
■ formal parameter: in declaration of class
■ actual parameter: passed in when method is called

■ variable names may or may not match
■ if parameter is primitive type

■ call by value: value of actual parameter copied into
formal parameter when method is called

■ changes made to formal parameter inside method
body will not be reflected in actual parameter value
outside of method

■ if parameter is object: covered later

14

Scope
■ Fields of class are have class scope: accessible to

any class member
■ in Die and Point class implementation, fields

accessed by all class methods
■ Parameters of method and any variables declared

within body of method have local scope: accessible
only to that method
■ not to any other part of your code

■ In general, scope of a variable is block of code
within which it is declared
■ block of code is defined by braces { }

15

Commenting Code
■ Conventions

■ explain what classes and methods do
■ plus anywhere that you've done something

nonobvious
■ often better to say why than what

■ not useful
int wishes = 3; // set wishes to 3

■ useful
int wishes = 3; // follow fairy tale convention

16

javadoc Comments
■ Specific format for method and class header comments

■ running javadoc program will automatically generate HTML
documentation

■ Rules
■ /** to start, first sentence used for method summary
■ @param tag for parameter name and explanation
■ @return tag for return value explanation
■ other tags: @author, @version
■ */ to end

■ Running
 % javadoc Die.java
 % javadoc *.java

17

javadoc Method Comment Example
/**
 Sets the die shape, thus the range of values it can roll.
 @param numSides the number of sides of the die
*/
public void setSides(int numSides) {
 sides = numSides;
}

/**
 Gets the number of sides of the die.
 @return the number of sides of the die
*/
public int getSides() {
 return sides;
}

18

javadoc Class Comment Example
/** Die: simulate rolling a die
 * @author: CPSC 111, Section 206, Spring 05-06
 * @version: Jan 31, 2006
 *
 * This is the final Die code. We started on Jan 24,
 * tested and improved in on Jan 26, and did a final
 * cleanup pass on Jan 31.
 */

19

Cleanup Pass
■ Would we hand in our code as it stands?

■ good use of whitespace?
■ well commented?

■ every class, method, parameter, return value
■ clear, descriptive variable naming conventions?
■ constants vs. variables or magic numbers?
■ fields initialized?
■ good structure?
■ follows specification?

■ ideal: do as you go
■ commenting first is a great idea!

■ acceptable: clean up before declaring victory

20

Key Topic Summary

■ Generalizing from something concrete
■ fancy name: abstraction

■ Hiding the ugly guts from the outside
■ fancy name: encapsulation

■ Not letting one part ruin the other part
■ fancy name: modularity

■ Breaking down a problem
■ fancy name: functional decomposition

