Relational Logistic Regression™

Seyed Mehran Kazemi, David Buchman, Kristian Kersting, Sriraam Natarajan, and David Poole

cs.ubc.ca/~smkazemi/

cs.ubc.ca/~davidbuc/

www—ail.cs.uni-dortmund.de/PERSONAL/kersting.html

homes.soic.indiana.edu/natarasr/

Abstract

Logistic regression is a commonly used representation for ag-
gregators in Bayesian belief networks when a child has mul-
tiple parents. In this paper we consider extending logistic re-
gression to relational models, where we want to model vary-
ing populations and interactions among parents. In this pa-
per, we first examine the representational problems caused by
population variation. We show how these problems arise even
in simple cases with a single parametrized parent, and pro-
pose a linear relational logistic regression which we show can
represent arbitrary linear (in population size) decision thresh-
olds, whereas the traditional logistic regression cannot. Then
we examine representing interactions among the parents of a
child node, and representing non-linear dependency on pop-
ulation size. We propose a multi-parent relational logistic re-
gression which can represent interactions among parents and
arbitrary polynomial decision thresholds. Finally, we show
how other well-known aggregators can be represented using
this relational logistic regression.

Introduction

Relational probabilistic models are models where there are
probabilities about relations among individuals that can be
specified independently of the actual individuals, and where
the individuals are exchangeable; before we know anything
about the individuals, they are treated identically. One of the
features of relational probabilistic models is that the predic-
tions of the model may depend on the number of individ-
uals (the population size) (Poole et al. 2012). Sometimes,
this dependence is desirable; in other cases, model weights
may need to change (Jian, Bernhard, and Beetz 2007;
Jian, Barthels, and Beetz 2009). In either case, it is impor-
tant to understand how the predictions change with popula-
tion size.

Varying population sizes are quite common. They can
appear in a number of ways including:
e The actual population may be arbitrary. For example,

in considering the probability of someone committing a

*This work was supported in part by the Institute for Comput-
ing Information and Cognitive Systems (ICICS) at UBC, NSERC,
MITACS and the German Science Foundation (DFG), KE 1686/2-
1.

Copyright (© 2014, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

cs.ubc.ca/~poole/

crime (which depends on how many other people could
have committed the crime) (Poole 2003) we could con-
sider the population to be the population of the neigh-
bourhood, the population of the city, the population of the
country, or the population of the whole world. It would
be good to have a model that does not depend on this ar-
bitrary decision. We would like to be able to compare
models which involve different choices.

e The population can change. For example, the number
of people in a neighbourhood or in a school class may
change. We would like a model to make reasonable pre-
dictions as the population changes. We would also like
to be able to apply a model learned at one or a number
of population sizes to different population sizes. For ex-
ample, models from drug studies are acquired from very
limited populations but are applied much more generally.

e The relevant populations can be different for each indi-
vidual. For example, the happiness of a person may de-
pend on how many of her friends are kind (and how many
are not kind). The set of friends is different for each in-
dividual. We would like a model that makes reasonable
predictions for diverse numbers of friends.

In this paper, we consider applying standard logistic regres-
sion to relational domains and tasks and investigate how
varying populations can cause a problem for logistic regres-
sion. Then we propose single-parent linear relational logis-
tic regression which solves this problem with standard logis-
tic regression by taking the population growth into account.
This representation is, however, only able to model linear
function dependencies of the child on its parents’ population
sizes. Also when used for multiple parents, it cannot model
the interactions among the parents. We examine these two
limitations and propose a general relational logistic regres-
sion which we prove can represent arbitrary Boolean formu-
lae among the parents as well as every polynomial depen-
dency of the child node on its parents’ population sizes. We
also show how other well-known aggregators can be repre-
sented using our polynomial relational logistic regression.

Our model assumes all the parent variables are categorical
and the child variable is Boolean. Extending the model to
multi-valued child variables and continuous parent variables
(as done by Mitchell (2010) for non-relational models) is left
as a future work.

Background
Bayesian Belief Networks

Suppose we have a set of random variables {Xi,...,X,}. A
Bayesian network (BN) or belief network (Pearl 1988) is
an acyclic directed graph where the random variables are
the nodes, and the arcs represent interdependence between
the random variables. Each variable is independent of its
non-descendants given values for its parents. Thus, if X; is
not an ancestor of X, then P(X; | parents(X;),X;) = P(X; |
parents(X;)). The joint probability of the random variables
can be factorized as:

= ﬁP(Xi | parents(X;))

i=1

P(Xl,Xz,...,Xn)

One way to represent a conditional probability distribu-
tion P(X; | parents(X;)) is in terms of a table. Such a tabular
representation for a random variable increases exponentially
in size with the number of parents. For instance, a Boolean
child having 10 Boolean parents requires 2'© = 1024 num-
bers to specify the conditional probability. A compact alter-
native to a table is an aggregation operator, or aggregator,
that specifies a function of how the distribution of a variable
depends on the values of its parents. Examples for common
aggregators include OR, AND, as well as “noisy-OR” and
“noisy-AND”. These can be specified much more compactly
than as a table.

Logistic Regression

Suppose a Boolean random variable Q is a child of the nu-
merical random variables {X;,X,,...,X, }. Logistic regres-
sion is an aggregation operator defined as:

P(q|Xy,...,X,) = sigmoid(wo + Y wiX;) (1)
i

where ¢ = “Q = True” and sigmoid(x) = 1/(1+e¥) . It
follows that P(q | X1,...,X,) > 0.5iff wo + ¥; wiX; > 0.

The space of assignments to the w’s so that wo+ Y, w;X; =
0 is called the decision threshold, as it is the boundary of
where P(q | Xi,...,X,) changes between being closer to 0
and being closer to 1. Logistic regression provides a soft
threshold, in that it changes from close to O to close to 1 in a
continuous manner. How fast it changes can be adjusted by
multiplying all weights by a positive constant.

The Factorization Perspective

A simple and general formulation of logistic regression can
be defined using a multiplicative factorization of the condi-
tional probability. (1) then becomes a special case, which is
equivalent to the general case when variables are binary and
probabilities are positive (non-zero).

We define a general logistic regression for O with par-
ents X1,...,X, (all variables here may be discrete or contin-
uous) to be when P(Q | Xj,...,X,) can be factored into a
product of non-negative pairwise factors and a non-negative
factor for Q:

P(Q|X1,....X,) < fo(Q HﬁQX

where o (proportional-to) means it is normalized sepa-
rately for each assignment to the parents. This differs from
the normalization for joint distributions (as used in undi-
rected models), where there is a single normalizing con-
stant. Here the constraint that causes the normalization is
VXi,... . X0 XoP(Q | X1,...,X,) = 1, whereas for joint
distributions, the normalization is to satisfy the constraint
ZQ,X],...,X,, P(QaX] g 7Xn) =1L
If Q is binary, then:

Plq|X1,....X,) = folg) T 1 fi(g. X))

Jo(g) [T fi(g, Xi) +fo(—q) [T 1 fi(—g, X
If all factors are positive, we can divide and then use the
identity y = em:

P(g| X1, X0) :
LyeoosXpn) =
e fol=g) 1 filma.Xi)
5o Him 7gx)
_ 1
1+exp (ln +Z” lln b qJ(,;)
fO(q) fl(Q7Xi)
= sigmoid +) InV—-—"2 1.
£ (" fo(—a) ; fi(=a. %)

When the In ﬁgﬁ;’;; are linear functions w.r.t. Xj, it is pos-
sible to find values for all w’s such that this can be repre-
sented by Eq. (1). This is always possible when the parents
are binary.

The idea of relational logistic regression is to extend lo-
gistic regression to relational models, by allowing weighted
logical formulae to represent the factors in the factorization
of a conditional probability.

Relational Models

Relational probabilistic models (Getoor and Taskar 2007)
or template based models (Koller and Friedman 2009) ex-
tend Bayesian or Markov networks by adding the concepts
of individuals (objects, entities, things), relations among in-
dividuals (including properties, which are relations of a sin-
gle individual) and by allowing for probabilistic dependen-
cies among these relations. In these models, individuals
about which we have the same information are exchange-
able, meaning that, given no evidence to distinguish them,
they should be treated identically. We provide some basic
definitions and terminologies in these models which are used
in the rest of the paper.

A population is a set of individuals. A population cor-
responds to a domain in logic. The population size is the
cardinality of the population which can be any non-negative
integer.

A logical variable is written in lower case. Each logical
variable is typed with a population; we use |x| for the size
of the population associated with a logical variable x. Con-
stants, denoting individuals, start with an upper case letter.

A parametrized random variable (PRYV) is of the form
F(t1,...,t) where F is a k-ary functor (a function symbol
or a predicate) and each ¢; is a logical variable or a constant.
Each functor has a range, which is {True, False} for predi-
cate symbols. A PRV represents a set of random variables,

Figure 1: logistic regression (with i.i.d. priors for the
R(x)). The left side is the relational model in plate nota-
tion and on the right is the groundings for the population
{A1,Ay,... Ay}

one for each assignment of individuals to its logical vari-
ables. The range of the functor becomes the range of each
random variable.

A relational belief network is an acyclic directed graph
where the nodes are PRVs. A grounding of a relational be-
lief network with respect to a population for each logical
variable is a belief network created by replacing each PRV
with the set of random variables it represents, while preserv-
ing the structure.

A formula is made up of assignments of values to PRVs
with logical connectives. For a Boolean PRV R(x), we rep-
resent R(x) = True by R(x) and R(x) = False by —R(x).

When using a single population, we write the population
as Aj...A,, where n is the population size, and use R; ...R,
as short for R(A1)...R(A,). We also use n,,; for the number
of individuals x for which R(x) = val. When R(x) is binary,
we use the shortened ny = nyye and ngp = ngyge.

Relational Logistic Regression

While aggregation is optional in non-relational models, it is
necessary in directed relational models whenever the parent
of a PRV contains extra logical variables. For example, sup-
pose Boolean PRV Q is a child of the Boolean PRV R(x),
which contains an extra logical variable, x, as in Figure 1. In
the grounding, Q is connected to n instances of R(x), where
n is the population size of x. For the model to be defined
before n is known, it needs to be applicable for all values of
n.

Common ways to aggregate the parents in relational do-
mains, e.g. (Horsch and Poole 1990; Friedman et al. 1999;
Neville et al. 2005; Perlish and Provost 2006; Kisynski and
Poole 2009; Natarajan et al. 2010), include logical operators
such as OR, AND, noisy-OR, noisy-AND, as well as ways to
combine probabilities.

Logistic regression, as described above, may also be used
for relational models. Since the individuals in a relational
model are exchangeable, w; must be identical for all parents
R; (this is known as parameter-sharing or weight-tying), so

Eq. (1) becomes:
P(q|Ry,...,R,) = sigmoid(wo +w1 }_R;). (2)
i

Consider what happens with a relational model when 7 is
not fixed.

Example 1. Suppose we want to represent “Q is True if and
only if R is True for 5 or more individuals”, i.e., ¢ = (|{1 :
R;=True}| > 5) or g = (ny > 5), using a logistic regression
model (P(q) >0.5) = (wo+wi X;R; > 0), which we fit for a
population of 10. Consider what this model represents when
the population size is 20.

If R = False is represented by 0 and R = True by 1, this
model will have Q = True when R is true for 5 or more in-
dividuals out of the 20. It is easy to see this, as }; R; only
depends on the number of individuals for which R is True.

However, if R = False is represented by —1 and R = True
by 1, this model will have Q = True when R is True for 10
or more individuals out of the 20. The sum }; R; depends on
how many more individuals have R True than have R False.

If R = True is represented by 0 and R = False by any other
value, this model will have Q = True when R is True for 15
or more individuals out of the 20. The sum } ; R; depends on
how many individuals have R False.

While the choice of representation for True and False
was arbitrary in the non-relational case, in the relational
case different parametrizations can result in different deci-
sion thresholds as a function of the population. The follow-
ing table gives five numerical representations for False and
True, with corresponding parameter settings (wp and wy),
such that all regressions represent the same conditional dis-
tribution for n = 10. However, for n = 20, the predictions
are different:

False True wo wp Prediction for n = 20
0 1 —45 1 0=(nr>9)
-1 1 0.5 05 Q= (nr>10)
-1 0 55 1 Q=(nr>15)
-1 2 -7 1 0=(mr=8)
1 2 -—145 1 0=(nr>0)

The decision thresholds in all of these are linear functions
of population size. It is straightforward to prove the follow-
ing proposition:

Proposition 1. Let R = False be represented by the num-
ber oo and R = True by B # a. Then, for fixed wy and wy

(e.g., learned for one specific population size), the decision
threshold for a population of size n is

wo I o
n.
wi(a—B) a—p
What is important about this proposition is that the way

the decision threshold changes with the population size n,
i.e., the coefficient ﬁ, does not depend on data (which af-

fects the weights wg and w), but only on the arbitrary choice
of the numerical representation of R.

Thus, Eq. (2) with a specific numeric representation of
True and False is only able to model one of the dependencies

of how predictions depend on population size, and so cannot
properly fit data that does not adhere to that dependence.

We need an additional degree of freedom to get a rela-
tional model that can model any linear dependency on n,
regardless of the numerical representation chosen.
Definition 1. Let Q be a Boolean PRV with a single parent
R(x), where x is the set of logical variables in R that are not
in Q (so we need to aggregate over x). A (single-parent, lin-
ear) relational logistic regression (RLR) for Q with parents
R(x) is of the form:

P(q|R(A1),....R(An)) =
sigmoid (wo +wi ZR,- +wy 2(1 —Ri)) 3)

where R; is short for R(A;), and is treated as 1 when it is
True and O when it is False. Note that) ; R; is the number of
individuals for which R is True (= ny) and Y ;(1 — R;) is the
number of individuals for which R is False (= nfg).
An alternative but equivalent parametrization is:
P(q|R(Ay),...,R(An)) =

sigmoid(wg + wy Z 14+ws ZR,-) “)
i i

where 1 is a function that has value 1 for every individual,
so Y ;1 = n. The mapping between these parametrizations is
w3 = wi —wp; wo and w» are the same.

Proposition 2. Let R = False be represented by ot and R =
True by B # a. Then, for fixed wo, wy and ws in Eq. (4), the
decision threshold for a population of size n is
wo n o+wy /W3
wi(a—p) a—p
Proposition 2 implies that the way the decision thresh-
old in a single-parent linear RLR grows with the population

size n, i.e. the coefficient %, depends on the weights.

Moreover, for fixed a and 3, any linear function of popula-
tion can be modeled by varying the weights. This was not
true for the traditional logistic regression.

For the rest of this paper, when we embed logical formu-
lae in arithmetic expressions, we take True formulae to rep-
resent 1, and False formulae to represent 0. Thus Y ; F is the
number of assignments to the variables L for which formula
F is True.

Interactions Among Parents

The RLR proposed in Definition 1 can be extended to mul-
tiple (parametrized) parents by having a different pair of
weights ((wy,w2) or (wa,w3)) for each parent PRV. This is
similar to the non-relational logistic regression, where each
parent has a (single) different weight. However, there are
cases where we want to model the interactions among the
parents.

Example 2. Suppose we want to model whether someone
being happy depends on the number of their friends that
are kind. We assume the variable Happy(x) has as parents
Friend(y,x) and Kind(y). Note that the number of friends
for each person can be different.

Consider the following hypotheses:

(a) A person is happy as long as they have 5 or more friends
who are kind.

happy(x) = |{y : Friend(y,x) AKind(y)}| > 5

(b) A person is happy if half or more of their friends are
kind.

happy(x) =\{y : Friend(y,x) A Kind(y)}]
> |{y: Friend(y,x) A —=Kind(y)}|

(c) A person is happy as long as fewer than 5 of their friends
are not kind.

happy(x) = |{y : Friend(y,x) A—Kind(y)}| <5

These three hypotheses coincide for people with 10
friends, but make different predictions for people with 20
friends.

All three hypotheses are based on the interaction between
the two parents. Linear RLR considers each parent sepa-
rately from the others, and so cannot model these interac-
tions without introducing new relations. In order to model
such aggregators, we need to be able to count the number of
instances of a formula that are True in an assignment to the
parents. We can use the following extended RLR to model
these cases:

P(happy(x) | IT)

= sigmoid (wo + wy ZFriend(y,x) A Kind(y))
y

+wy ZFriend(y,x) A=Kind(y))
>

where IT is a complete assignment of friend and kind to the
individuals, and the right hand side is summing over the
propositions in IT for each individual. To model each of the
above three cases, we can set wo, wi, and wy in Eq. (5) as
follows:

(a) Letwg=—45,wi=1,wy= 0

(b) Letwop= 0.5,w=1,wy=—-1

() Letwog= 55w =0,w,=-1

Going from Eq. (3) to Eq. (4) allowed us to only model
the positive cases in linear single-parent RLR. We can use a
similar construction for more general cases:

Example 3. Suppose a PRV Q is a child of PRVs R(x) and
S(x). We want to represent “Q is True if and only if there are
more than ¢ individuals for x for which R(x) A =S(x).” As
in Example 2, we need to count the number of instances of
a formula that are True in an assignment to the parents. It
turns out that in this case R(x) A S(x) is the only non-atomic
formula required to model the interactions between the two
parents, because other conjunctive interactions can be repre-
sented using this count as follows:

Z R(x) A=S(x) :ZR(x) - ZR(x) AS(x)
ZﬁR(x) A S(x) :ZS(x) - ZR(x) AS(x)

X

ZﬂR(x) A=S(x) =|x]| fZR(x) fZS(x) +ZR()C) AS(x)

X

with |x| = Y, True.

Example 3 shows that the positive conjunction of the in-
teracting parents is the only formula required to compute
arbitrary conjunctions of the two parents. In more compli-
cated cases, however, subtle changes to the representation
may be required.

Example 4. Suppose a PRV Q is a child of PRVs R(x, y) and
S(x,z). Suppose we want to represent “Q is True if and only
if we have R(x,y) A —S(x,z) for more than 5 triples (x,y,z)”.
If we only count the number of instances of (RAT)(x,y,z)
that are True given the assignment to the parents and do the
same as in Example 3, we would only count the number of
pairs (x,y) for which R(x,y) is True. However, we need the
number of triples (x,y,z) for which R(x,y) is True. We thus
need to use Y, , . R(x,y) as the number of assignments to x,
y and z, for which R(x,y) is True, as follows:

Y R(x,y) A=S(x,2) = Y R(x,y)— Y R(x,y) AS(x,y,2)
Xy, Xy, Xy,
So as part of the representation, we need to incude the set
of logical variables, and not just a weighted formula.

Non-Linear Decision Thresholds

Examples 3 and 4 suggest how to model interactions among
the parents. Now consider the case where the child PRV is
a non-linear function of its parents’ population sizes. For
instance, if the individuals are the nodes in a dense graph,
some properties of arcs grow with the square of the popula-
tion of nodes.

Markov logic networks (MLNSs) (Richardson and Domin-
gos 2006; Domingos et al. 2008) define probability distri-
butions over worlds (complete assignments to the ground
model) in terms of weighted formulae. The probability of
a world is proportional to the exponential of the sum of the
weights of the instances of the formulae that are True in the
world. The probability of any formula is obtained by sum-
ming over the worlds in which the formula is True. MLNs
can also be adapted to define conditional distributions. The
following example shows a case where a non-linear condi-
tional distribution is modeled by MLNs.

Example 5. Consider the MLN for PRVs Q and R(x), con-
sisting of a single formula O A R(x) A R(y) with weight w,
where y represents the same population as x. The probabil-
ity of ¢ given observations of R(A;) for all A; has a quadratic
decision threshold:

P(q|R(A}),...,R(A,)) = sigmoid(w nz?).

A similar method can be used by RLR to model non-linear
decision thresholds. Consider the following example:

Example 6. Suppose a PRV Q is a child of the PRV R(x),
and we want to represent “Q is True if and only if n7> > np”.
This dependency can be represented using the single-parent
linear RLR by introducing a new logical variable x’ with the
same population as x and treating R(x') as if it were a sep-
arate parent of Q. Then we can use the interaction between
R(x) and R(x) to represent the model in this example as:

ZR(x) AR(X) — ZTrue + ZR(x).

x.x

General Relational Logistic Regression

The previous examples show the potential for using RLR as
an aggregator for relational models. We need a language for
representing aggregation in relational models in which we
can address the problems mentioned. We propose a gener-
alized form of RLR which works for multi-parent cases and
can model polynomial decision thresholds.

Definition 2. A weighted parent formula (WPF) for a
PRV Q(x), where x is a set of logical variables, is a triple
(L,F,w) where L is a set of logical variables for which
LNx={}, F is a Boolean formula of parent PRVs of Q
such that each logical variable in F either appears in Q or is
in L, and w is a weight. Only those logical variables that do
not appear in Q are allowed to be substituted in F.

Definition 3. Let Q(x) be a Boolean PRV with parents
R;i(x;), where x; is the set of logical variables in R;. A (multi-
parent, polynomial) relational logistic regression (RLR)
for Q with parents R;(x;) is defined using a set of WPFs as:

P(g(X) |TI) = sigmoid(Z w ZFH,JHX)
(L,F.w) L

where IT represents the assigned values to parents of Q, X
represents an assignment of an individual to each logical
variable in x, and Fry,_x is formula F' with each logical
variable x in it being replaced according to X, and evaluated
in I1. (The first summation is over the set of WPFs; the sec-
ond summation is over the tuples of L. Note that }., sums
over a single instance.)

Since the logical variables that appear in Q(x) are fixed in
the formulae and not allowed to be substituted according to
Definition 2, in the rest of the paper we only focus on those
logical variables of the parents that do not appear in Q(x).

The single-parent linear RLR (Definition 1) is a subset of
Definition 3, because the terms of Eq. (4) can be modeled by
WPFs:

e wyo can be represented by ({}, True,wp)
e w1 Y; 1 can be represented by ({x}, True, w>)
e w3Y;R; can be represented by ({x},R(x),w3)
RLR then sums these WPFs, resulting in:
P(q | TT) = sigmoid (wo Z True +w Z True +wy ZR(x))
{ {x} {x
= sigmoid (wo +wan+w3 Y R;).
i

Example 7. Consider the problem introduced in Example 4.
Using general RLR (Definition 3), we can model the condi-
tional probability of Q using the following WPFs:

({}, True, wy)
({x,y,z},R(x,y) A _‘S(y,Z),W]>

Or alternatively:

(1}, True, wo)
<{)C,y,Z},R(X,y),W1>
<{x,y,z},R(x,y) /\S(y,z), _W1>

Canonical Forms for RLR

While in Definition 2 we allow for any Boolean formula of
parents, we can prove that a positive conjunctive form is suf-
ficient to model all the Boolean interactions among parents.
A Boolean interaction is one that can be expressed in terms
of logical connectives of values to the parents.

Proposition 3. Let Q be a Boolean PRV with parents R;(x;),
where x; is a set of logical variables in R; which are not in Q.
Using only positive conjunctive form formulae in the WPFs
for Q, all Boolean interactions between the parents can be
modeled by RLR.

Proof. We show how to model every conjunctive form in-
teraction between the parents. Other interactions (such as a
disjunctive interaction) can be modeled by a set of conjunc-
tives.

For a subset M of parents of Q, we prove by induction
on the number of negations j < |M|, that every conjunctive
form interaction between the parents having j negations can
be modeled by a set of WPFs.

For j = 0, the formula F is in a positive conjunction form
and the proposition holds (even if M = {}). Assume the
proposition holds for j < [M|. For j+ 1, let R;(x;) be one of
the negated parents. Removing —R;(x;) from the formula F
gives a new formula F; with j negated parents. According to
our assumption for j negations, there exists a set S; of WPFs
that models F. Replacing —R;(x;) in F by R;(x;) gives a new
formula F, with j negated parents, which can be modeled by
some set Sy of WPFs. Let S’1 represent the WPFs in S where
each set of logical variables L in each WPFs is replaced by
LUx;. F can then be modeled by combining S} and S, and
negating the weights associated with S,. The reason why
this is correct can be seen in Example 4. O

Proposition 3 suggests using only positive conjunctive
formuale in WPFs. Proposition 4 proves that positive dis-
junctive RLR has the same representational power as posi-
tive conjunctive RLR. Therefore, all propositions proved for
positive conjunctive RLR in the rest of the paper also hold
for positive disjunctive RLR.

Proposition 4. A conditional distribution P(Q | R;(x;)) can
be expressed by a positive disjunctive RLR if and only if it
can be expressed by a positive conjunctive RLR.

Proof. First, suppose P(Q | R;(x;)) can be expressed by a
positive disjunctive RLR. We can write a disjunctive for-
mula as a negated conjunctive formula. So we change all
the disjunctive formulae in the WPFs for P(Q | Ri(x;)) to
negated conjunctive formulae. A negated conjunctive for-
mula in WPF (L,—F,w) can be modeled by two conjunc-
tive WPFs (L, T,w) and (L, F,—w). The latter WPF consists
of negated parents but we know from Proposition 3 that we
can model it by a set of positive conjunctive WPFs. Con-
sequently, P(Q | R;(x;)) can be also expressed by a positive
conjunctive RLR.

Now, suppose the conditional distribution can be ex-
pressed by a positive conjunctive RLR definition of P(Q |
Ri(x;)). While Proposition 3 is written for positive con-
junctive RLR, it is straight forward to see that it also holds

for negative conjunctive RLR. This means that we can ex-
press Q by WPFs having negative conjunctive formulae.
We can represent each of these formulae in a negated pos-
itive disjunctive form. We also mentioned that a negated
WPF (L,—F,w) can be expressed by two WPFs (L, T,w)
and (L,F,—w). The former does not contain any parent
and the latter is in positive disjunctive form. Consequently,
P(Q | Ri(x;)) can be also expressed by a positive disjunctive
RLR. O

Buchman et al. (2012) looked at canonical representations
for probability distributions with binary variables in the non-
relational case. Our positive conjunctive canonical form cor-
responds to their “canonical parametrization” with a “ref-
erence state” True (i.e., in which all variables are assigned
True), and our positive disjunctive canonical form has a con-
nection to using a “reference state” False. Their “spectral
representation” would correspond to a third positive canoni-
cal form for RLR, in terms of XORs (i.e., parity functions).

Polynomial Decision Thresholds

We can also model polynomial decision thresholds using
RLR. The following example is a case where the child PRV
depends on |x|2.

Example 8. Suppose Q is a Boolean PRV with a parent
R(x), where x is a set of logical variables in R which are
not in Q. By having a WPF ({x,x'},R(x) AR(x"),w) for Q
where x’ is typed with the same population as x, the condi-
tional probability of Q depends on the square of the number
of assignments to x for which R(x) is True.

Example 8 represents a case where the conditional prob-
ability of a child PRV is a non-linear function of its parent’s
population size. We can prove that by using only positive
conjunctive formulae in the WPFs of a child PRV, we can
model any polynomial decision threshold. First we prove
this for the single-parent case and then for the general case
of multi-parents. We assume in the following propositions
that Q is a Boolean PRV and R;(x;) are its parents where x;
is the set of logical variables in R; which are not in Q. We
also use x; to refer to a new logical variable typed with the
same population as x;.

Proposition 5. A positive conjunctive RLR definition of
P(Q | R(x)) (single-parent case) can represent any decision
threshold that is a polynomial of terms each indicating a
number of (tuples of) individuals for which R(x) is True or
False.

Proof. Based on Proposition 3 we know that a WPF having
any Boolean formula can be written as a set of WPFs each
having a positive conjunctive formula. Therefore, in this
proof we disregard using only positive conjunctives. The fi-
nal set of WPFs can be then represented by a set of positive
conjunctive WPFs using Proposition 3.

Each term of the polynomial in the single-parent case is
of the form w(TJ; |yi|di)nT°‘nFﬁ, where n7 and ng denote the
number of individuals for which R(x) is True or False re-
spectively, y; € x represents the logical variables in x, a, 3
and d;s are non-negative integers, and w is the weight of the

term. First we prove by induction that for any j, there is a
WPF that can build the term nT"‘nF’3 where a+ 5 =j, x>0
and § > 0.

For j = 0, nr%npP = 1. We can trivially build this by
WPF ({}, True,w). Assuming it is correct for j, we prove it
forj+ 1. For j+ 1, either & > 0 or B > 0. If & > 0, using our
assumption for j, we can have a WPF (L, F,w) which builds
the term n7% 'npP. So the WPF (LUX,F AR(x'),w) builds
the term ny%ngP because the first WPF was True ny® 'ngP
times and now we count it ny more times because R(x') is
True ny times.

If « =0 and B > 0, we can have a WPF (L,F,w)
which builds the term nT“npﬁ -1 By the same rea-
soning as in previous case, we can see that the WPF
(LU{xX'},F A—=R(x'),w) produces the term ny%ngP.

In order to include the population size of logical variables
yi, where y; € x, and generate the term ([]; |y,~\df)nT°‘np3,
we only add d; extra logical variables y; to the set of logical
variables of the WPF that generates nT“nFﬁ . Then we set

the weight of this WPF to w to generate the desired term.
O

Conclusion. We can conclude from this proposition that a
term w([; [yi|%)nr*ngP can be generated by having a WPF
with its formula consisting of ny instances of R(x') and np
instances of —R(x’), adding d; of each logical variable y; to
the set of logical variables, and setting the weight of WPF to
w. We will use this conclusion for proving the proposition
in multi-parent case.

Example 9. Suppose we want to model the case where Q
is True if ny? > 2np + 5. In this case, we need to model
the sigmoid of the polynomial n;> — 2np —4.5. The reason
for using 4.5 instead of 5 is to make the polynomial posi-
tive when ny? = 2ny + 5. The following WPFs are used by
RLR to model this polynomial. The first one generates the
term ny2, the second one generate —2ny and the third one
generates —4.5.

({x, X'}, R(x) AR(X),1)

<{x}, —R(x),-2)
({}, True,—4.5)

Note that the second WPF above can be written in positive
form by using the following two WPFs:

({x}, True,—2)
({x},R(x),2)

Using the conclusion following Proposition 5, we now ex-
tend Proposition 5 to the multi-parent case:

Proposition 6. A positive conjunctive RLR definition of
P(Q | Ri(x;)) (multi-parent case) can represent any decision
threshold that is a polynomial of terms each indicating the
number of (tuples of) individuals for which a Boolean func-
tion of parents hold.

Proof. Let G1,Ga,...,G; represent the desired Boolean
functions of parents for our model. Also let ;) denote the
number of individuals for which G; is True. Each term of

the polynomial in the multi-parent case is then of the form:
w * (a polynomial of population sizes) * nﬁl)nﬁ% . nZ’)
We demonstrate how we can generate any term

a0 o
nayR) I The inclusion of population size of

logical variables and the weight w for each term is the same
as in Proposition 5.

The conclusion of Proposition 5 can be easily generalized
to work for any Boolean formula G; instead of R. We only
need to include a conjunction of ¢; instances of G; with dif-
ferent logical variables representing the same population in
each instance. We use this generalization in our proof.

For each ng"), we can use the generalization of con-

clusion of the Proposition 5 to come up with a WPF
(L;i,F;,1) which generates this term. Similar to the
reasoning for single-parent case, we can see that the
WPF ({U/_|Lj, F{ A\Fy \---AF;,w) generates the term

nﬁ‘)nf% . nz’) We can then use Proposition 3 to write this

WPF using only positive conjunctive WPFs. O

Example 10. Suppose we want to model the case where
Q is True if the square of number of individuals for which
R (x1) = True multiplied by the number of individuals for
which Ry(x,) = True is less than five times the whole num-
ber of False individuals in R;(x;) and R;(x;). In this case,
we define G} = =R (x1), G2 = —Rz(x2) and G3 = R (x1) A
Ri(x]) AR2(x2) we need to model the sigmoid of the poly-
nomial 5n(1) + 5n;) —n3) —0.5. The reason why we use
—0.5 in the polynomial is that we want the polynomial to be
negative when 5n1) +5n(3) = n(3). The following WPFs are
used by RLR to model this polynomial where the first for-
mula generates the term 5n(y), the second generates 5n),
the third generates —n 3) and the fourth generates —0.5.

({x1}, =R (x1),5)

({x2}, =Rz (x2),5)

<{X] ax/l ax2}aR1 (X]) ARy (xll) /\Rz(xz)a _1>
({}, True,—0.5)

Note that the first and second WPF above can be written in
positive form in the same way as in Example 9.

Proposition 7 proves the converse of Proposition 6:

Proposition 7. Any decision threshold that can be repre-
sented by a positive conjunctive RLR definition of P(Q |
Ri(x;)) is a polynomial of terms each indicating the num-
ber of (tuples of) individuals for which a Boolean function
of parents hold.

Proof. We prove that every WPF for Q can only generate a
term of the polynomial. Since RLR sums over these terms,
it will always represent the polynomial of these terms.
Similar to Proposition 6, let G, G»,...,G, represent the
desired Boolean functions of parents and let n(; denote the
number of individuals for which G; is True. A positive con-
junctive formula in a WPF can consist of ¢ instances of Gy,
o, instances of Go, ..., ¢ instances of G;. Based on Propo-

sition 6, we know that this formula is True n?‘l‘)n?% .. ng’)

times. The WPF can contain more logical variables in its set
of logical variables than the ones in its formula. This, how-
ever, will only cause the above term to be multiplied by the

population size of the logical variable generating a term of
the polynomial described in Proposition 6. Therefore, each
of the WPFs can only generate a term of the polynomial
which means that positive conjunctive RLR can only repre-
sent the sigmoid of this polynomial. 0

Approximating Other Aggregators Using RLR

We can model other well-known aggregators using positive
conjunctive RLR. In most cases, however, this is only an
approximation because the sigmoid function reaches 0 or 1
only asymptotically and we cannot choose infinitely large
numbers. We can, however, get arbitrarily close to 0 or 1 by
choosing arbitrarily large weights. In the rest of this section,
we use M to refer to a number which can be set sufficiently
large to receive the desired level of approximation. n,,; is
the number of individuals x for which R(x) = val, when R is
not Boolean.
OR. To model OR in RLR, we use the WPFs:

{}, True,—M)
({x},S(x),2M)

for which P(q | S(x)) = sigmoid(—M + 2Mk). We can see
that if none of the individuals are True (i.e. ny = 0), the value
inside the sigmoid is —M which is a negative number thus
the probability is close to 0. If even one individual is True
(i.e. ny > 1), the value inside the sigmoid becomes positive
and the probability becomes closer to 1. In both cases, the
value inside the sigmoid is a linear function of M. Increasing
M pushes the probability closer to 0 or to 1 and the approxi-
mation becomes more accurate.

AND. AND can be modeled similarly to OR, but with the

WPFs
{}, True,M)

(

({x}, True,—2M)

({x},5(x),2M)
for which P(g | S(x)) = sigmoid(M — 2Mnp). When np =0,
the value inside the sigmoid is M > 0, so the probability
is closer to 1. When ng > 1, the value inside the sigmoid
becomes negative and the probability becomes closer to 0.
Like OR, accuracy increases with M. Note that the number
of WPFs for representing OR and AND is fixed.

Noisy-OR and noisy-AND. Figure 2 (a) represents how
noisy-OR and noisy-AND can be modeled for the network
in Figure 1. In this figure, R(x) represents the values of the
individuals being combined and N(x) represents the noise
probability. For noisy-OR, S(x) = R(x) AN(x), and Q is the
OR aggregator of S(x). For noisy-AND, S(x) = R(x) VN (x),
and Q is the AND aggregator of S(x).

Mean > t. We can model “Q is True if mean(R(x)) > ¢~
using the following WPFs (val and ¢ are numeric constants):

({}, True,—M)

({x},R(x) = val,M*(val —1)) for each val € range(R)
for which

P(q | R(x)) = sigmoid(—M + M Z Hygi(val —t))

valerange(R)

= sigmoid(—M + M?(sum — nt))

@ (b)

Figure 2: (a) The model for the noisy-OR and noisy-AND
aggregators (b) The model for the mode aggregator

where n = |x| and sum represents the sum of the values of
sum

the individuals. When mean = EE >, the value inside the
sigmoid is positive and the probability is close to 1. Other-
wise, the value inside the sigmoid is negative and the prob-
ability is close to 0. Note that M should be greater than
|m| to generate a number greater than 1 when multiplied
by (sum — nt). Otherwise, it may occur that sum — nt > 0
but M?(sum — nt) < M which makes the sigmoid produce a
number close to 0. Also note that the number of required
WPFs grows with the number of values that the parent can
take.

More than t Trues. “Q is True if R is True for more than

t individuals” can be modeled using the WPFs:

({}, True, —2Mt— M)
{x},R(x),2M)

giving P(q | R(x)) = sigmoid(—2Mt — M + 2Mnr) and the
value inside the sigmoid is positive if ny > t. The number of
WPFs required is fixed.

More than t% Trues. “Q is True if R is True for more
than ¢ percent of the individuals” is a special case of the
aggregator “mean > 1f;” when we treat False values as 0

and True values as 1. This directly provides the WPFs:

{}, True,—M)
<{x}’ﬁR(x)’ (O_ﬁ»
1= 10))

M2
({xd, R(x),M%(

while requiring M > \m |, where n is the populations
size of x. Note that we can use Proposition 3 to replace
the second WPF with two WPFs having positive conjunc-
tive formulae. Unlike the aggregator “mean > ...”, here the
number of WPFs is fixed.

Max >t. We can model “Q is True if max(R(x)) >~
using the following WPFs:

{{}, True,—M)
({x},R(x) =val,2M)

thus P(q | R(x)) = sigmoid(—M + 2M ¥, ;> crange(R) Mval)-
The value inside the sigmoid is positive if there is an individ-
ual having a value greater then 7 (i.e. Jval > ¢ € range(R) :

for each val > ¢, val € range(R)

nyq > 0). Note that the number of WPFs required grows
with the number of values greater than 7 that the parents can
take.

Max. For binary parents, the “max” aggregator is iden-
tical to “OR”. Otherwise, range(Q) = range(R(x)). The
“max” aggregator can be modeled using a 2-level struc-
ture. First, for every ¢ € range(R(x)), create a separate
“max > r” aggregator, with R(x) as its parents. Then, define
the child Q, with all the “max > ¢’ aggregators as its par-
ents. Q can compute max R(x) given its parents. Note that
while |parents(Q)| = |range(R(x))| may be arbitrarily large,
|parents(Q)| does not change with population size, hence it
is possible to use non-relational constructs (e.g., a table) for
its implementation.

Mode = t. To model “Q is True if mode(R(x)) =1”, we
first add another PRV S(y) to the network as in Figure 2 (b)
where y represents the range of the values for R(x). Then for
each individual S(C) of S(y), we use the following WPFs for
which P(s(C) | R(x)) = sigmoid(M — 2M (n¢c — n,)) and the
value inside the sigmoid is positive if n; > nc. Note that the
number of WPFs required grows with the number of values
that the parent can take.

({}, True,M)
({x},R(x) = C,—2M)
({x},R(x) = 1,2M)

Then Q must be True if all the individuals in S are True.
This is because a False value for an individual of S means
that this individual has occurred more than ¢ and ¢ is not the
mode. Therefore, we can use WPFs similar to the ones we

used for AND:
({}, True, M)

({y}, True,—2M)
(v} 8(v),2M)

Mode & Majority. For binary parents, the “mode” ag-
gregator is also called “majority”, and can be modeled with
the “more than t% Trues” aggregator, with t = 50. Oth-
erwise, range(Q) = range(R(x)), and we can use the same
approach as for “max”, by having |range(R(x))| separate
“mode = ¢~ aggregators, with Q as their child.

Beyond Polynomial Decision Thresholds

Proposition 7 showed that any conditional probability that
can be expressed using a positive conjunctive RLR defini-
tion of P(Q | Ri(x;)) is the sigmoid of a polynomial of the
number of True and False individuals in each parent R;(x;).
However, given that the decision thresholds are only defined
for integral counts, some of the apparently non-polynomial
decision thresholds are equivalent to a polynomial and so
can be modeled using RLR.

Example 11. Suppose we want to model Q = ([/nr| <
np). This is a non-polynomial decision threshold, but since
nr and np are integers, it is equivalent to the polynomial de-

cision threshold ny — (np — 1)2 < 0 which can be formulated
using RLR.

Example 12. Suppose we want to model Q = (2"7 > 3"F).
This is, however, equivalent to the polynomial form Q =

(nrlog2 — nrlog3 > 0) and can be formulated in positive
conjunctive RLR using the WPFs:

({x}, True,—log3)
({x},R(x), log3+log2)

There are, however, non-polynomial decision thresholds
that cannot be converted into a polynomial one and RLR is
not able to formulate them.

Example 13. Suppose we want to model Q = (2"7 > np).
This cannot be converted to a polynomial form and RLR
cannot formulate it.

Finding a parametrization that allows to model any non-
polynomial decision threshold remains an open problem.

Conclusion

Today’s data and models are complex, composed of objects
and relations, and noisy. Hence it is not surprising that re-
lational probabilistic knowledge representation currently re-
ceives a lot of attention. However, relational probabilistic
modeling is not an easy task and raises several novel issues
when it comes to knowledge representation:

e What assumptions are we making? Why should we
choose one representation over another?

e We may learn a model for some population size(s), and
want to apply it to other population sizes. We want to
make assumptions explicit and know the consequences of
these assumptions.

e If one model fits some data, it is important to understand
why it fits the data better.

In this paper, we provided answers to these questions for the
case of the logistic regression model. The introduction of the
relational logistic regression (RLR) family from first princi-
ple is already a major contribution. Based on it, we have
investigated the dependence on population size for different
variants and have demonstrated that already for simple and
well-understood (at the non-relational level) models, there
are complex interactions of the parameters with population
size. Future work includes inference and learning for these
models and understanding the relationship to other models
such as undirected models like MLNs. Exploring these di-
rections is important since determining which models to use
is more than fitting the models to data; we need to under-
stand what we are representing.

References

Buchman, D.; Schmidt, M.; Mohamed, S.; Poole, D.; and
Freitas, N. D. 2012. On sparse, spectral and other parame-
terizations of binary probabilistic models. In AISTATS 2012-
15th International Conference on Artificial Intelligence and
Statistics.

Domingos, P.; Kok, S.; Lowd, D.; Poon, H.; Richardson,
M.; and Singla, P. 2008. Markov logic. In Raedt, L. D.;
Frasconi, P.; Kersting, K.; and Muggleton, S., eds., Proba-
bilistic Inductive Logic Programming. New York: Springer.
92-117.

Friedman, N.; Getoor, L.; Koller, D.; and Pfeffer, A. 1999.
Learning probabilistic relational models. In Proceedings of
the Sixteenth International Joint Conference on Artificial In-
telligence (IJCAI-99), volume 99, 1300-1309. Stockholm,
Sweden: Morgan Kaufman.

Getoor, L., and Taskar, B. 2007. Introduction to Statistical
Relational Learning. MIT Press, Cambridge, MA.

Horsch, M., and Poole, D. 1990. A dynamic approach to
probability inference using bayesian networks. In Proc. sixth
Conference on Uncertainty in Al, 155-161.

Jian, D.; Barthels, A.; and Beetz, M. 2009. Adaptive Markov
logic networks: Learning statistical relational models with
dynamic parameters. In 9th European Conference on Artifi-
cial Intelligence (ECAI), 937-942.

Jian, D.; Bernhard, K.; and Beetz, M. 2007. Extending
Markov logic to model probability distributions in relational
domains. In K7, 129-143.

Kisynski, J., and Poole, D. 2009. Lifted aggregation in di-
rected first-order probabilistic models. In Twenty-first Inter-

national Joint Conference on Artificial Intelligence, 1922—
1929.

Koller, D., and Friedman, N. 2009. Probabilistic Graphical
Models: Principles and Techniques. MIT Press, Cambridge,
MA.

Mitchell, T. 2010. Generative and discrimina-
tive classifiers: naive Bayes and logistic regression.
http://www.cs.cmu.edu/ tom/mlbook/NBayesLogReg.pdf.

Natarajan, S.; Khot, T.; Lowd, D.; Tadepalli, P.; and Kerst-
ing, K. 2010. Exploiting causal independence in Markov
logic networks: Combining undirected and directed models.
In European Conference on Machine Learning (ECML).

Neville, J.; Simsek, O.; Jensen, D.; Komoroske, J.; Palmer,
K.; and Goldberg, H. 2005. Using relational knowledge dis-
covery to prevent securities fraud. In Proceedings of the
11th ACM SIGKDD International Conference on Knowl-
edge Discovery and Data Mining. MIT Press.

Pearl, J. 1988. Probabilistic Reasoning in Intelligent Sys-
tems: Networks of Plausible Inference. San Mateo, CA:
Morgan Kaufman.

Perlish, C., and Provost, F. 2006. Distribution-based aggre-
gation for relational learning with identifier attributes. Ma-
chine Learning 62:65-105.

Poole, D.; Buchman, D.; Natarajan, S.; and Kersting, K.
2012. Aggregation and population growth: The relational
logistic regression and Markov logic cases. In Proc. UAI-
2012 Workshop on Statistical Relational Al

Poole, D. 2003. First-order probabilistic inference. In Pro-
ceedings of the 18th International Joint Conference on Arti-
ficial Intelligence (IJCAI-03), 985-991.

Richardson, M., and Domingos, P. 2006. Markov logic
networks. Machine Learning 62:107-136.

