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Abstract. When building probabilistic relational models it is often dif-
ficult to determine what formulae or factors to include in a model. Differ-
ent models make quite different predictions about how probabilities are
affected by population size. We show some general patterns that hold in
some classes of models for all numerical parametrizations. Given a data
set, it is often easy to plot the dependence of probabilities on population
size, which, together with prior knowledge, can be used to rule out classes
of models, where just assessing or fitting numerical parameters will be
misleading. In this paper we analyze the dependence on population for
relational undirected models (in particular Markov logic networks) and
relational directed models (for relational logistic regression). Finally we
show how probabilities for real data sets depend on the population size.

1 Introduction

Relational probabilistic models [4, 17] or template-based models [10] represent
the probabilistic dependencies between relations of individuals. In these models,
individuals about which we have the same information are exchangeable (i.e.
the individuals are treated identically when we have no evidence to distinguish
them) and the probabilities are about relations among individuals, which can be
specified independently of actual individuals.

In a relational probabilistic model, the predictions of the model may depend
on the number of individuals (the population size). For instance, whether some-
one enjoys a party or not may depend on the number of people they know at
that party, and each person at a party may know a different number of people.

Even simple models make strong predictions about the effect of population
size on probabilities. If we want to extrapolate from data (as opposed to inter-
polating), it is important to know how the models handle changes in population
size. Extrapolating from small sample sizes to large ones can be very presumptu-
ous, e.g., people act very differently in small groups than in mobs. The structure

? Parts of this paper appeared in the UAI-2012 StarAI workshop [16].



of the model reflects implicit prior knowledge and assumptions, which are impor-
tant to understand. We advocate that we should choose from the models where
the extrapolation is reasonable given the data and prior knowledge.

We consider two classes of relational models, undirected models exemplified
by Markov logic networks (MLNs) [18, 2], and directed models with aggregators
exemplified by relational logistic regression (RLR) [9], the directed analogue of
MLNs.

This work is complementary to the work of Jain et al. [8, 7], who allow weights
to vary with the population. Varying weights may be necessary for a particular
domain, but from a modeling perspective it is first important to understand
what happens when weights are not varied. This paper mainly considers what
happens as the population varies, rather that just the limiting probabilities [6].

In the rest of the paper, we first introduce some basic definitions and describe
MLNs and RLR. Then we consider a simple model and explain how RLR models
and MLNs are influenced by population size and how they behave differently even
for this simple model. We then expand these results to more complicated cases,
and give some general theoretical results, some empirical data and many open
problems.

2 Some Basic Definitions

A population is a set of individuals. A population corresponds to a domain
in logic. The population size is the cardinality of the population which can be
any non-negative integer. For this paper we assume the populations are disjoint;
each individual is only in one population. When there is a single population, we
use n for the population size, and write the population as A1 . . . An.

Each logical variable, written in lower case, is typed with a population.
pop(x) is the population associated with the logical variable x, and |x| = |pop(x)|.
Constants, denoting individuals, start with an upper case letter. We assume there
is a constant for each individual, and there is no uncertainty about the identity
of the individuals.

A parametrized random variable (PRV) is of the form F (t1, . . . , tk)
where F is a k-ary predicate symbol and each ti is a logical variable or a constant.
For example, At(x, y), At(x,Home), At(Sam,Home) are PRVs. The range of
the random variables is {False, True}. (It is possible to have PRVs with more
general domains, but the points of the paper can already be made in this simpler
setting.) A ground random variable is a PRV where all ti are constants.

An atom is an assignment of a value to a PRV. For example, At(x,Home) =
True is an atom. We will write assignments in lower case; R(x) = True is written
as r(x), and R(x) = False is written as ¬r(x). A formula is made up of atoms
with logical connectives (we ignore quantification in this paper.) An instance
of a formula is obtained by replacing logical variables with constants.

A world is an assignment of a value to each ground random variable. The
number of worlds is exponential in the number of ground random variables.



3 Markov Logic Networks and Relational Logistic
Regression

Markov logic networks (MLNs) [18, 2] and relational logistic regression (RLR) [9]
are defined in terms of weighted formulae. In MLNs the formulae are used to
define joint probability distributions. In RLR the formulae are used to define
conditional probabilities.

A weighted formula (WF) is a triple 〈L,F,w〉 where L is a set of logical
variables, F is a formula where all of the free logical variables in F are in L, and
w is a real-valued weight.

An MLN is a set of weighted formulae4, where the probability of any world
is proportional to the exponent of the sum of the weights of the instances of the
formulae that are true in the world.

RLR is a form of aggregation, defining conditional probabilities in terms of
weighted formulae. We assume a directed acyclic graph on PRVs (where the
PRVs of different nodes do not unify), which defines a Bayesian network on
the corresponding ground random variables. For each PRV, there are weighted
formulae involving an instance of that PRV and PRVs involving instances of (a
subset of) the parent PRVs. The conditional probability of each ground random
variable given an assignment of values to each of its parent ground random
variables is proportional5 to the exponential of the sum of the weights of the
instances of the formulae that are true for that assignment.

Example 1. Suppose we have the weighted formulae:

〈{}, q, α0〉
〈{x}, q ∧ ¬r(x), α1〉
〈{x}, q ∧ r(x), α2〉
〈{x}, r(x), α3〉

Treating this as an MLN, if the truth value for r(x) for every individual x is
observed:

P (q | obs) = sigmoid(α0 + nFα1 + nTα2) (1)

where obs has R(x) true for nT individuals, and false for nF individuals out of
a population of n = nF + nT individuals. sigmoid(x) is 1/(1 + e−x).

Note that, in the MLN, α3 is not required for representing the conditional
probability (because it cancels out), but can be used to affect P (r(Ai)).

4 MLNs typically do not explicitly include the set of logical variables as part of the
weighted formulae, but use the free variables in F . If one wanted to add an extra
logical variable, x, one could conjoin true(x) to F where true is a property that is
true for all individuals.

5 In MLNs there is a single normalizing constant, guaranteeing the probabilities of
the worlds sum to 1. In RLR, normalization is done separately for each possible
assignment to the parents.



In [9], the sigmoid, as in Equation (1), is used as the definition of RLR.
([9] assumed all formulae were conjoined with q∧, and omitted q∧ from the
formulae.) When not all R(Ai) are observed, RLR uses Equation (1) for the
conditional probability of q given each combination of assignments to the R(x),
and requires a separate model for the probability of the R(x).

In summary: RLR uses the weighted formulae to define the conditional prob-
abilities, and MLNs use them to define the joint probability distribution.

Example 2. Suppose people want to go to a party, and the party is fun for them if
they know at least one social person in the party. In this case, a PRV funFor(x)
is a child of PRVs knows(x, y) and social(y). The following weighted formulae
can be used to model the dependence of funFor(x) on its parents:

〈{x}, funFor(x),−5〉
〈{x, y}, funFor(x) ∧ knows(x, y) ∧ social(y), 10〉

RLR sums over the above weighted formulae and takes the sigmoid, giving:

P (funFor(x) | Π) = sigmoid(sum), where sum = −5 + 10nT

where, for each x, Π is an assignment of values to knows(x, y) and social(y),
and nT represents the number of individuals y for which knows(x, y)∧ social(y)
is True in Π. When nT = 0, sum < 0 and the probability is closer to 0; when
nT > 0, sum > 0 and the probability is closer to 1.

Example 3. This example is similar to Example 1, but uses only positive con-
junctions6, and also involves multiple logical variables of the same population.

〈{}, q, α0〉
〈{x}, q ∧ true(x), α1〉
〈{x}, q ∧ r(x), α2〉
〈{x}, true(x), α3〉
〈{x}, r(x), α4〉
〈{x, y}, q ∧ true(x) ∧ true(y), α5〉
〈{x, y}, q ∧ r(x) ∧ true(y), α6〉
〈{x, y}, q ∧ r(x) ∧ r(y), α7〉

In RLR and in MLN, if all R(Ai) are observed:

P (q | obs) = sigmoid(α0 + nα1 + nTα2 + n2α5 + nTnα6 + n2Tα7)

where obs has R(x) true for nT individuals, and false for nF individuals out of
a population of n. The use of two logical variables (x, y) of the same population
gives a squared dependency in the population.

6 Here true(x) is true of every x. This notation is redundant. If you want the tradi-
tional MLN notation, you can remove the explicit set of logical variables and keep the
true(·) relations. If you are happy with the explicit logical variables, you can remove
the true(·) predicates. Removing both is incorrect. Keeping both is harmless. For-
mulae that involve negation are redundant; any set of weighted formulae involving
negation can be replaced by weighted formulae that don’t involve negation [9].



4 Three Elementary Models

Consider the simplest case of aggregating over populations, with a PRV Q con-
nected to a PRV R(x) containing an extra logical variable, x, as in Figure 1. In
the grounding, Q is connected to n = |pop(x)| instances of R(x). We assume the
model is defined before n is known; it is applicable for all values of n.
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Fig. 1. Running example as (a) näıve Bayes (b) logistic regression with independent
priors for each R(x) and (c) Markov network. On the top are the networks using plate
notation, where plates [1], drawn as rectangles, correspond to logical variables. On the
bottom are the groundings for the population {A1, A2, . . . , An}.

For this situation, Fig. 1(c) shows an undirected model with a factor for Q
and a pairwise factor for Q with each individual. Fig. 1(a) shows a directed
model where R(x) is a child of Q. In the grounding it produces a näıve Bayes
model with a factor for P (Q) and a separate factor for P (R(Ai) | Q) for each
individual. In both of these models the joint probability is the product of factors.
In terms of MLNs and RLR, factors corresponds to weighted formulae.

The näıve Bayes model of Figure 1(a) is an instance of the Markov network
of 1(c). Every näıve Bayes model can be represented by a Markov network, but
the converse is not true. In some sense the näıve Bayes model is the Markov
network with the constraint that the factors represent conditional probabilities
(sum to 1, given Q).

For a directed model with R(x) as a parent of Q (Fig. 1(b)), Q has an un-
bounded number of parents in the grounding, so we need some way to aggregate
the parents. Common ways to aggregate in relational domains, e.g. [5, 3, 12, 14,
11], include logical operators such as noisy-or, noisy-and, as well as ways to com-
bine probabilities. This requirement for aggregation occurs in a directed model
whenever a parent contains an extra logical variable.



While it may seem that these models are syntactic variants, the models in-
volve very different independence assumptions [13]:

– In the näıve Bayes and the MLN (Figure 1(a) and 1(c)), the variables R(x)
and R(y) (for x 6= y) are independent given Q, and dependent not given Q.

– In the directed model with aggregation (Figure 1(b)) the variables R(x) and
R(y) (for x 6= y) are dependent given Q, and independent not given Q.

These dependencies do not depend on what aggregation is used for the di-
rected model. For the rest of this paper we assume that RLR is used as the
aggregator. Note that RLR can use the same formulae as the MLN, in which
case, when all R(Ai) are observed, the posterior probability of Q would be the
same in the MLN and RLR models; however, the posterior probabilities of Q are
different when not all of the R(Ai) are observed.

The difference in the dependency structure means that we cannot represent
a logistic regression model where the R(Ai) are dependent when Q is observed
using an MLN, because in such an MLN the R(Ai) are independent given Q.
It is an open problem whether introducing new formulae that involve multiple
individuals may allow an MLN to represent the regression model. Similarly,
an RLR model cannot represent the MLN where the R(Ai)’s are dependent
not given Q, without introducing other relations or dependencies among the
variables. It is an open question as to whether any finite set of formulae is
adequate to make them able to represent the same distributions.

5 Effects of Population Sizes

In this section we investigate the behaviour of MLNs and RLR as the population
size n varies.

5.1 A Comparison of MLN, RLR and MF for the Simplest Case

We now compare MLN, RLR, and a simple mean-field (MF) approximation
of RLR, for the elementary models in Figure 1. For MLN (Figure 1 (c)), we
use the MLN parametrization of Example 1 as the joint distribution. For RLR
(Figure 1 (b)), we use pr as the i.i.d. prior probability of each r(x), and use
the RLR parametrization of Example 1 for P (q | R(A1), . . . , R(An)). (Note that
P (r(x)) = pr can be represented by RLR model for R(x) using the single formula
〈{x}, r(x), α3〉, where sigmoid(α3) = pr.) We can now sum out the unobserved
variables R(x), and get P (q | n). The dependency of P (q) on n is an effect of
population size.

For the MLN, when Q is conditioned on, the graph is disconnected, with each
component R(x) having the same probability. So to compute PMLN (q | n), we
can compute the probability of one of them and raise it to the power of n [15]:

PMLN (q | n) = sigmoid( α0 + n log(eα2 + eα1−α3) ) (2)



Note this is a logistic function (the sigmoid of a linear function) of n and α0,
but not a logistic function of the other parameters.

For the RLR model, summing out the unobserved variables R(x) gives:

PRLR(q | n) =

n∑
i=0

(
n
i

)
sigmoid(α0 + iα1 + (n− i)α2)(1− pr)ipn−ir

where i is the number of individuals for which R(x) is false. This inference is an
instance of first-order variable elimination [19].

Finally, the simple mean-field approximation to the RLR model is:

PMF (q | n) = sigmoid(α0 + nprα1 + n(1− pr)α2)

Note that npr is the expected number of R(x)’s that are true, and n(1− pr) is
the expected number of R(x)’s that are false.

Example 4. Fig. 2 compares P (q | n) for RLR, MLN and the mean-field ap-
proximation of RLR, using α0 = −4.5, α1 = 1, α2 = −1, and pr = 0.7 (thus
PMF (q | n) = sigmoid(−4.5 + 0.4n)). The MLN uses α3 = 2.82, chosen to give
it the same probability as the RLR for n = 1.
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Fig. 2. P (q | n) in Example 4.

PMLN (q | n) is a logistic function (the sigmoid of a linear function) of n,
and so is monotonic with n. It might be conjectured that the MLN and RLR
models are qualitatively similar. It is therefore intuitive to make the following
conjecture:
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Fig. 3. P (q | n) in Example 5

Conjecture 1. PRLR(q | n) (in the RLR model for Fig. 1 (b)) is monotonic in n.

It turns out that this conjecture is false.

Example 5. Fig. 3 demonstrates the setting: α0 = −2, α1 = 2, α2 = −1, pr =
0.3. Whereas the mean-field approximation of RLR, PMF (q | n) = sigmoid(−2−
0.1n), is monotonic, PRLR(q | n) is not, having a maximum at n = 18. (Exam-
ple 6 shows PMLN (q | n) for this setting.)

5.2 Phase Transitions in MLNs

A phase transition in physics arises when a value flips from one state to another.
In this section we show how a probability can flip from one value to another
(e.g, close to 1 or close to 0) as either a parameter varies or a population varies.
These interact, as rate of change can depend on the population and on parameter
values.

One of the properties of the directed model of Figure 1(b) is that PRLR(R(Ai) |
n) does not depend on n and can be given as input to the model. In MLNs, how-
ever, PMLN (R(Ai) | n) depends on n, except for the special case of a näıve
Bayes model represented using an MLN. We show that for some MLNs, there is
a phase transition where PMLN (R(Ai) | n) cannot be arbitrarily set in the limit
as the population increases.

Example 6. Consider the same parametrization as Example 5, and the mapping
to MLNs given in Example 1. Under this mapping, the MLN and the RLR both
represent the same conditional probability P (q | R(A1), . . . , R(An)). To fully
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Fig. 4. PMLN (q | α3) in an MLN for various population sizes n, for Example 6.

specify the model, RLR requires pr, representing P (r(x)) for all x. The MLN
requires α3.

Fig. 4 shows PMLN (q | α3) for different population sizes n. All of these slopes
are logistic functions. As n increases the slope becomes steeper.

There is a phase transition at approximately α3 = 0.7. For α3 < 0.7,
PMLN (q | n) decreases with n, and for α3 > 0.7, PMLN (q | n) increases with n.
At the phase transition point, PMLN (q | n) does not depend on n. The phase
transition occurs when the coefficient of n in Equation (2) is 0.

Fig. 5 shows PMLN (r(A1) | α3) for different population sizes n (PMLN (r(Ai))
is identical for all individuals Ai). Similarly to Figure 4, the slope becomes
steeper with increasing n’s.

Notice the way the parameter α3 affects PMLN (q) or PMLN (r(Ai)) depends
on n. We cannot set the parameters so that the MLN represents arbitrary values
for PMLN (r(Ai)) as the population varies, as we show:

At the phase transition, there is an approximately vertical line segment for
large populations. The corresponding probabilities for r(A1) cannot be repre-
sented in the limit n → ∞. In the limit, PMLN (q | n) approaches either 0 or 1
(or is not affected by n). Suppose in the limit PMLN (q | n) → 1 and we tried
to adjust α3 to fit PMLN (r(A1) | n) = 0.3 when PMLN (q | n) = 1. The new
value found for α3 implies that PMLN (q | n)→ 0 in the limit. Similarly, suppose
PMLN (q | n)→ 0 and we tried to adjust α3 to fit PMLN (r(A1) | n) = 0.3 when
PMLN (q | n) = 0, the new value found for α3 implies that PMLN (q | n) → 1.
Thus α3 cannot be set to make PMLN (r(A1) | n)→ 0.3 as n→∞.
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Fig. 5. PMLN (r(A1) | α3) in an MLN for various population sizes n, for Example 6.

Fig. 6 shows how P (q) and P (r(A1)) vary with population size for two differ-
ent parameterizations, α3 = 0.66 and 0.73. The monotonically increasing lines
are for α3 = 0.73 and the decreasing lines are for α3 = 0.66. As α3 gets closer
to the phase transition, the graphs approach the extremes at a slower rate.

5.3 Behavior of MLNs on More General Cases

In general it is a complex inference problem to determine the probability of a
random variable as a function of n. However, we can characterize some of the
cases where the probability is bounded away from 0 and 1, or approaches 0 or 1
in the limit as a population approaches infinity.

Proposition 1. Consider an MLN with finite weights. Let n be the size of some
population and V be a ground random variable. If the number of formula instan-
tiations that depend on V ’s value is independent of n, then PMLN (V | n) is
bounded away from 0 and 1, i.e., exists c > 0 such that 0 < c ≤ PMLN (V | n) ≤
1− c < 1 for all n’s.

Proof. The number of such formula instantiations was guaranteed to be fixed
(independent of n). The weights are finite, so each such contribution is bounded.
Define the neighbours of V to be the grounding of the other PRVs in the weighted
formulae that V appears in. Let c be the minimum of the conditional probability
of V given its neighbours, and ¬V given its neighbours. This c has the property
specified in the proposition, as P (V | n) is a linear interpolation of the proba-
bilities of V given its neighbours. ut

Proposition 2. Consider an MLN with finite weights. Let pop be some popu-
lation, n = |pop|, V be any PRV, and V ′ be any ground instance of V . If V ′
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Fig. 6. PMLN (q | n) and PMLN (r(A1) | n) for α3 = 0.66 and 0.73, for Example 6.

does not unify with a PRV that is in a weighted formula with another PRV that
has an extra logical variable typed with pop, then PMLN (V ′ | n) is bounded away
from 0 and 1.

Proof. In this case V ′ has a fixed number of neighbours in the grounding as
n varies, and there are a fixed number of formula instantiations that depend
on V ′’s value. Therefore, Proposition 1 guarantees PMLN (V ′) is bounded away
from 0 and 1. ut

Proposition 3. Consider an MLN with finite weights. If PRV V is in a formula
with PRV R that includes a logical variable of a population of size n that does
not appear in V , and for any such R, R does not unify with a PRV in other
formulae or with an instance of itself in that formula, then either PMLN (V | n)
is a constant (independent of n), or limn→∞ PMLN (V ) is either 1 or 0.

Proof. Such cases are locally isomorphic to the simple case analyzed earlier. ut

It is an open problem to characterize other cases of what happens in the
limit.

5.4 Real Data and Prior Knowledge

Figure 7 show P (25 < Age(p) < 45 | n) for a person p, given the number n
of movies they rated, for the Movielens 1M dataset (http://grouplens.org/
datasets/movielens/), averaged over all people. This is calculated by bucketing
over n, with at least 20 people in each bucket.

When trying to fit models to such data, we first need to choose what model
class to use. We might want to not only fit to the data, but to fit what we expect
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Fig. 7. Observed P (25 < Age(p) < 45 | n) from the Movielens dataset.

in the limit. We can design the structure of the model to either go to 0 or 1
in the limit or to be bounded away from 0 and 1. In this particular example,
we would not expect the probability to go to 0 or 1, and we would also not
expect the age to be independent of the number of movies a person has rated
(the population size n for each person). So in the model we would not just have
weighted formulae that contain Age(person) and Rated(person,movie), for if we
did, by Proposition 3, either the age does not depend on the number of movies
rated or the Age becomes deterministic (is 1 or 0) in the limit. This does not
preclude more complicated formulae, but a preference for simpler models might.

5.5 Fitting Polynomials

In Example 3, P (q | n) is a (sigmoid of a) degree-2 polynomial of n. One might
innocently write weighted formulae like in Example 3 without realizing the im-
plications of such statements and get very surprising results. In this section we
show by example what can happen unexpectedly.

Consider fitting a degree-2 polynomial to data in which the population size n
is in the range 0 ≤ n ≤ 50. Suppose we find that the closest fit is 0.01n2−n+16.
Suppose in another run, we fit −0.01n2 − 0.2n+ 8. Figure 8 plots these, but in
the range 0 ≤ n ≤ 100. The polynomials are very close in the training range,
but the first polynomial goes up soon after, even though we have no evidence of
this in the data set.

This is not an isolated occurrence. A degree-k polynomial may have up to k−1
points where it changes between increasing and decreasing. If the polynomial we
fit has one or more of these points beyond the region of the training set, we are
likely to get very unintuitive predictions.
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Fig. 8. Sigmoids of polynomials of n. The population size, n, is on the x-axis.

The sign of the coefficient of the leading power in the polynomial determines
whether the probability approaches 0 or 1. However, this is often difficult to
determine, particularly if we are close to phase transitions.

6 Conclusion

In this paper we investigated the dependence on population size for relational
models. Even for simple models that are well understood at the non-relational
level, there are complex interactions of the parameters with population size. The
results of this paper are important for a number of reasons:

– If we learn a model for some population sizes and apply it to other pop-
ulation sizes, it is important to know what the model implies about such
extrapolation of population sizes. Here we have shown some cases where the
details of the model makes particular predictions about the extrapolation.

– We want to know the effect of choosing particular formulae. What assump-
tions are we making? For example, adding an adding an extra variable to a
formula adds a dependency on population size.

– If one model fits some data better than another, it is important to understand
why. We have investigated the effects of some design decisions for directed
and undirected models.

– If we want to extrapolate from data, how can prior information affect the
formulae used. The prior information we have considered is what how should
the probability change as the population grows.

The other message is that undirected models such as MLNs are different to
directed models, such as those that use RLR. It is important to understand these
differences if we are to choose an appropriate model for a domain. In particular,
when fitting a model to data, we should consider both models, and not assume
that one works better than the other independently of the domain.

This paper has exposed more questions than it has answered. Determining de-
pendencies on population sizes for more complicated models is an open question,
which may allow a modeler to rule out some models for their specific application.
Ideally, we would like ways to generate qualitative descriptions about the model
from the model’s formulae.
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