
Lazy Arithmetic Circuits

Seyed Mehran Kazemi and David Poole
The University of British Columbia

Vancouver, BC, V6T 1Z4
{smkazemi, poole}@cs.ubc.ca

Abstract
Compiling a Bayesian network into a secondary structure,
such as a junction tree or arithmetic circuit allows for offline
computations before observations arrive, and quick inference
for the marginal of all variables. However, query-based al-
gorithms, such as variable elimination and recursive condi-
tioning, that compute the posterior marginal of few variables
given some observations, allow pruning of irrelevant vari-
ables, which can reduce the size of the problem. Madsen and
Jensen show how lazy evaluation of junction trees can allow
both compilation and pruning. In this paper, we adapt the lazy
evaluation to arithmetic circuits, allowing the best of both
worlds: pruning due to observations and query variables as
well as compilation while exploiting local structure and de-
terminism.

Bayesian networks (Pearl 1988; Koller and Friedman 2009)
are compact representations for probability distributions
over sets of random variables. We are often interested in per-
forming probabilistic inference over these networks: given
some evidence, finding the marginal posterior probabilities
for one or more query variables.

Variable elimination (Zhang and Poole 1994; Dechter
1996) and recursive conditioning (Darwiche 2001b) are two
query-based inference algorithms for Bayesian networks.
They allow for pruning the Bayesian network given a query
variable and evidence. In order to answer queries on multiple
random variables given an evidence, they can be run multi-
ple times and gain by sharing a cache between the runs.

Clique tree algorithms (Lauritzen and Spiegelhalter 1988;
Shafer and Shenoy 1990; Jensen, Lauritzen, and Olesen
1990) compile a Bayesian network into a secondary data
structure called junction tree (JTree) and find the marginal
probabilities for all random variables with two passes
through this JTree in time linear in the size of the JTree.
Another advantage of these algorithms is that they can shift
some of the operations into the compilation which is done
offline and only once.

There are cases where we need the probabilities for a sub-
set (not all) of the variables. For instance in a medical set-
ting, after observing the patient’s symptoms, a doctor might
be suspicious about only a few (but not all) of the diseases.
In such cases, one can run a clique tree algorithm and only

Copyright c© 2016, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

use the probabilities for the query variables. Traditionally,
these algorithms could not prune the JTree with respect to
the query variables and the evidence. Madsen and Jensen
(1999) made pruning possible for JTrees by lazy evaluation
of the potentials and lazy propagation of the messages. Lazy
evaluation/propagation introduces some overhead, but they
showed empirically that especially when there is evidence
on many (but not all) random variables, their algorithm out-
performs standard inference algorithms for JTrees.

It has been proved that JTrees are subsumed by a more
general data structure called arithmetic circuits (Darwiche
2003; Park and Darwiche 2004). Inference on a Bayesian
network can be performed by compiling the network into an
arithmetic circuit and finding the probabilities for all (non-
evidence) random variables given some evidence by evalu-
ating and differentiating the circuit. Arithmetic circuits can
exploit the determinism and the local structure in conditional
probability tables (CPTs) of a Bayesian network and im-
prove on clique tree algorithms when such properties ap-
pear. It has been shown that an algorithm that exploits these
properties can gain exponential improvements over standard
clique tree algorithms that do not exploit these properties
(Darwiche 2002). Inference algorithms for arithmetic cir-
cuits do not prune the circuit based on the query variables
and the evidence.

In this paper, we use the the lazy evaluation/propagation
idea in (Madsen and Jensen 1999) to prune a class of arith-
metic circuits that we call lazy arithmetic circuits (LAC) be-
fore running an inference algorithm. The size of the pruned
LAC can be exponentially smaller than the size of the origi-
nal LAC. Pruning can be done in time linear in the size of the
pruned LAC and the number of irrelevant random variables.
Thus, pruning can be done in time sub-linear in the size of
the original LAC. Similar to arithmetic circuits, LACs can
exploit the determinism and the local structure (in the form
of context-specific independence (Boutilier et al. 1996) and
beyond) to improve inference.

Following (Madsen and Jensen 1999), we focus on the in-
ference task where the probabilities of some random vari-
ables are desired for a fixed evidence. We leave the case
where queries involve different evidences as future work.

CPT1

P(A)

0.2

 CPT2

P(B)

0.6

C P(D)

T 0.9

F 0

CPT4

A B P(C)

T T 0.1

T F 0.2

F T 0.8

F F 0.8

CPT3

A B

C

D

E

B P(E)

T 0.1

F 0.4

CPT5

Figure 1: A Bayesian network.

Background and Notations
We use upper-case letters to represent random variables. An
upper-case letter in bold refers to a set of variables. To sim-
plify the descriptions, we assume variables are binary but all
our ideas can be used for non-binary variables. We represent
V = true by v and V = f alse by ¬v. A lower-case letter in
bold represents a set of value assignments.

Bayesian Networks
Let {V1,V2, . . . ,Vn} be n random variables. A Bayesian net-
work (BN) is an acyclic directed graph (DAG) whose nodes
are random variables and whose edges represent conditional
dependencies among variables. Each variable is independent
of all its non-descendants in the DAG given a value for its
parents.

Let pa(Vi) represent the parent nodes of random variable
Vi in the DAG. The joint probability distribution over the
random variables in the (BN) can be defined as:

P(V1,V2, . . . ,Vn) =
n

∏
i=1

P(Vi|pa(Vi)) (1)

Figure 1 represents an example of a BN with five random
variables and the corresponding CPTs. Inference in a BN
refers to answering queries on posterior probabilities of one
or more target variables given some evidence. For instance
in Figure 1, we might be interested in P(C|b). When an-
swering a query, a variable is called barren (Shachter 1986)
if it is neither an evidence nor a target variable, and it only
has barren descendants. These variables add no information
to the given query and can be ignored. For example for the
query P(C|b), D and E are barren variables. Furthermore,
there might be non-barren variables in the network that are
independent of the query variables given the observation.
These variables are d-separated from the query variables
given the observation and can be ignored. We can find these
variables efficiently in linear (in the number of network vari-
ables) time (see (Geiger, Verma, and Pearl 1990)). In order to
answer a query, we refer to the barren variables and the vari-
ables d-separated from the query variables given evidence as
irrelevant variables.

Arithmetic Circuits
Let PD be a probability distribution over random variables
{V1,V2, . . . ,Vn} induced by a BN. PD can be equivalently
represented by a multilinear function. This function is called

+

∗ ∗

𝑒 𝛼 ¬𝑒 𝛽

∗

𝜁 𝜙

(a) (b) (c)

+

∗ ∗

𝑐 𝜃 ¬𝑐 𝜔

(d)

+

∗ ∗

𝑎 𝜂 ¬𝑎 𝜈 0.2 0.8

Figure 2: Parts of an AC generated for the BN in Figure 1.
(a) represents the top levels of the AC, (b) represents the sub-
AC denoted by α in (a), (c) represents the sub-AC denoted
by θ in (b), (d) denotes the sub-AC denoted by ζ in (c). φ ,
η and ν represent other sub-ACs generated for B and D.

the network polynomial (Darwiche 2003) and is defined as
follows:

f = ∑
V=v

n

∏
i=1

I(Vi = vi)P(Vi = vi|pa(Vi) = π(Vi)) (2)

where ∑V=v sums over all possible instantiations of the vari-
ables, I(.) is the indicator function, π(Vi) is the assignment
in v projected on the parents of Vi, and P(Vi|pa(Vi)) are the
network parameters. For simplicity, we use v and ¬v in our
figures instead of I(v) and I(¬v).

Having the network polynomial, we can compute the
probabilities for all variables given some evidence by evalu-
ating and differentiating the polynomial function (see (Dar-
wiche 2003) for more details). The size of this polynomial
is, however, exponential in the number of variables.

Arithmetic circuits (ACs) are compact representations for
network polynomials and can have a size exponentially
smaller than the size of the network polynomial (exponen-
tial in treewidth). They represent the network polynomial as
a rooted DAG whose internal nodes are additions and mul-
tiplications, and whose leaves are numeric constants or vari-
ables. Once the AC is constructed for a network polynomial,
all the values and derivatives for some evidence can be com-
puted in time linear in the size of the circuit. From these
values and derivatives, the probabilities of all variables in
the network given evidence e (as well as some other prob-
abilities) can be computed. Figure 2 represents parts of an
AC for the BN in Figure 1.

We refer to a part of an AC having a structure similar to
Figure 2(a) (an OR of two AND nodes one containing e and
one containing ¬e) as the decision-tree (DT) of E. We also
let ETrue refer to the AC rooted at the AND node containing
the child I(e) and EFalse refer to the AC rooted at the and
node containing the child I(¬e) in the DT of E.

Lazy Recursive Conditioning Graphs
In this section, we describe how we use the recursive con-
ditioning (RC) algorithm to construct a data structure that
we call lazy recursive conditioning graph (LRCGraph), and
why this data structure is interesting. First, we define the
components used in an LRCGraph.

A node in an LRCGraph contains a random variable and
two informedEdges. An informedEdge for a node N with
random variable V is composed of a v ∈ {True,False} for

V , a (possibly empty) set of 〈CPT Index,Value〉 pairs, and
a pointer to a supernode. Let RV s(N) represent the random
variables in the subgraph rooted at node N. A supernode is
a (possibly empty) set of nodes {N1,N2, . . . ,Nk} such that
RV s(Ni)∩RV s(N j) = /0 for i 6= j.

An LRCGraph is a rooted, directed acyclic graph com-
posed of supernodes and informedEdges, and can be gener-
ated for an input BN by symbolic (instead of numeric) eval-
uation of the RC algorithm for the input BN. Algorithm 1
gives a high level description of how an LRCGraph is gener-
ated for a BN. We use the dot notation to refer to the features
and methods of an object. For instance for a supernode sn,
sn.nodes gives its set of nodes. A context in our algorithm
refers to a set of value assignments to the random variables.
We describe Algorithm 1 using an example. A CPT can be
evaluated if all its variables are assigned in the context.
Example 1. Consider the BN in Figure 1 and suppose we
generate an LRCGraph for this BN using Algorithm 1. Ini-
tially, we call the algorithm with the BN and an empty con-
text as input. Similar to the RC algorithm, we choose an or-
der for the random variables and perform case analysis on
the variables in that order. We put no constraints on the order
of the variables, so any heuristic (e.g., see (Kjaerulff 1985;
Dechter 2003; Kazemi and Poole 2014)) can be used to se-
lect an order in line 13 of the algorithm.

Suppose initially we decide to do a case analysis on E. We
generate a supernode having one node for E. The node con-
tains two informedEdges: one corresponding to E = True
and one corresponding to E =False. Since none of the CPTs
of the BN can be evaluated after assigning a value to E, the
informedEdges have no 〈CPT Index,Value〉 pairs. For each
informedEdge, we add the value assigned to the E to the con-
text and call the algorithm for the BN and the new context.
These operations correspond to the lines 14-22 of the algo-
rithm. The root supernode of the LRCGraph in Figure 3(a)
corresponds to the case analysis on E. We follow the algo-
rithm for the call having E = True in its context; the other
call can be done similarly.

After assigning E to True, suppose we decide to do a case
analysis on C. This case analysis can be done similarly as the
case analysis on E. Let’s follow the call were both E and C
are assigned to True. In this call, the algorithm realizes that
the BN is disconnected given the assignments in the con-
text: one component has A and B and the other one has D.
Therefore, the algorithm is called for each component sep-
arately, two LRCGraphs are generated, a new supernode is
created having the nodes in the root supernode of each LR-
CGraph, and the supernode is returned as the output. These
operations correspond to lines 7-12 of the algorithm. The
supernode containing two nodes (one for A and one for D)
in Figure 3(a) corresponds to the supernode created for this
call.

Let’s follow the call for the component containing A and
B. Suppose we have done a case analysis for A similar to
the previous random variables and we are in a branch were
A = False in the context. Then we do a case analysis on
B. For the branch were B = False, CPT2, CPT3 and CPT5
evaluate to 0.4, 0.8 and 0.4 respectively. We keep the index
of these CPTs as well as the value they evaluate to in the

(a) (b)

A

...
(F, {})

 (F, {(2,0.4),

 (3,0.8)})

(T, {})

B

C

A

...

...

... (F, {(2,0.4),

 (3,0.8),

 (5,0.4)})

(T, {4,0.9})

(F, {(1,0.8)})

...

...
(F, {})

(T, {}) (F, {})

(T, {})

E

C

B

A D

Figure 3: (a) Parts of an LRCGraph generated for the BN
in Fig. 1. Circles represent nodes and rectangles represent
supernodes. (b) The LRCGraph of part (a) pruned for the
query P(C|b).

informedEdges of the node for B. Since we keep all these
values (not a product of them as is done in RC), we call
our data structure a Lazy RCGraph. After each case analysis,
we keep our computations in a cache (line 23) so we can
potentially re-use them in future (lines 5 and 6). Our context
forgets about the variables that are no longer needed (lines 3
and 4) to improve caching.

Following all these calls gives the LRCGraph of Fig-
ure 3(a). Using this LRCGraph, we can answer many infer-
ence queries on the BN of Figure 1.

Determinism and Context-Specific Independence
LRCGraphs can exploit the determinism and context-
specific independence (CSI) in the CPTs.

Example 2. In the BN in Figure 1, P(d|¬c) = 0. There-
fore, when we branch on D in the LRCGraph in Figure 3(a)
under the branch where C = False, we only generate the
D = False branch. This could reduce the size of the LRC-
Graph substantially if there were many variables beneath D
in the BN.

Also note that in Figure 1, when A = False, the proba-
bility of C being True is 0.8 regardless of the value of B
(i.e. C is contextually independent of B when A = True). In
order to exploit this type of independence among variables,
we can evaluate a CPT as soon as we have all required infor-
mation (not when all variables are assigned in the context)
and remove the CPT. Exploiting CSI has been shown to have
a high impact on the efficiency of the inference (Poole and
Zhang 2003; Chavira and Darwiche 2005).

The amount of determinism and CSI exploited by LRC-
Graphs depends on the branching order. For the BN of Fig-
ure 1, for example, if we had generated an LRCGraph by
first branching on B, then A, and then C, we could not ex-
ploit C being contextually independent of B given A = True.

Pruning LRCGraphs
In order to answer queries on an LRCGraph, we can prune
the graph based on the observation and query variables be-
fore starting the inference algorithms.

Algorithm 1 LRCGraph(Bayesian Net. BN, Context Con)

Input: A Bayesian network and a context.
Output: The root of an LRCGraph.

1: if BN has no CPTs then
2: return an empty supernode
3: if ∃{X = val} ∈Con s.t. X /∈ BN then
4: return LRCGraph(BN, Con \{X = val})
5: if 〈〈BN,Con〉 ,supernode〉 ∈Cache then
6: return supernode
7: if |CC = connected components(BN,Con)|> 1 then
8: Create a new supernode sn
9: for each cc ∈CC do

10: cc root = LRCGraph(cc,Con)
11: sn.add(cc root.nodes)
12: return sn
13: Select variable V for branching on
14: Create node n with variable V
15: for each v ∈ {True,False} do
16: Create a new InformedEdge ie with ie.value = v
17: to eval =CPT s.can be evaluated(Con∪{V = v})
18: for each cpt ∈ to eval do
19: ie.addPair(cpt.index,eval(cpt,Con∪{V = v}))
20: ie.child = LRCGraph(BN \to eval,Con∪{V = v})
21: n.add(ie)
22: Create supernode sn with one node n
23: Cache.add(〈〈BN,Con〉 ,sn〉)
24: return sn

Example 3. Consider the LRCGraph in Figure 3(a) and the
query P(C|¬a). D and E are barren variables, so we remove
the 〈CPT Index,Value〉 pairs that belong to the CPT of D
or E (CPT4 and CPT5) from the informedEdges. Once we
remove these pairs, P(C|¬a) does not change if we condi-
tion on any value for D or E. So we remove these variables
from the LRCGraph by replacing them with either one of
the subgraphs beneath them. We can also ignore the branch
that sets A to True as we have observed it to be False.
Note that after observing A, the edge going from A to C
can be removed from the network, which means A is also
d-separated from C after we observe it. Therefore, we can
remove the 〈CPT Index,Value〉 pairs that belong to the CPT
of A (CPT1). The resulting LRCGraph is demonstrated in
Figure 3(b). Now we can run our inference algorithm on the
pruned LRCGraph. Note that pruning is possible on LRC-
Graphs because of the lazy evaluation of the CPTs. In order
to answer the same query, if we had multiplied the values of
the three CPTs when branching on B = False (or B = True),
we could not replace E by one of its children because the
values of the branches beneath B would depend on the value
of E.

An LRCGraph can be pruned by following these steps:

• Given the query variables and the evidence, find all the
irrelevant variables in the original BN.

• Replace any node in the LRCGraph having an irrelevant
variable with either one of its children.

• Remove all the 〈CPT Index,Value〉 pairs from informed-

Edges where CPT Index belongs to an irrelevant variable.
• For the evidence variables, only keep the informedEdge

whose value is consistent with the evidence.
• During pruning, whenever the root supernode contains

more than one node, remove the nodes (and their sub-
graphs) from the root having only non-query variables in
their subgraph.

From LRCGraphs to ACs
LRCGraphs can be compiled into ACs and the same pruning
can be run on the ACs. Let sn be a supernode in the LRC-
Graph with nodes {n1,n2, . . . ,nk}. In order to compile this
supernode into an AC, we generate a product node with k
children, where the i-th child is generated from compiling ni
into AC. In order to compile a node n with variable V , we
generate a DT for n: a summation node having two product
nodes as children, one for V being True and one for V be-
ing False. The product node for the True branch has these
children: I(v)1, the values in 〈CPT Index,Value〉 pairs with
CPTIndex stored in them as extra information, and the AC
generated from compiling the child supernode that the in-
formedEdge for V being True is pointing to. The children of
the product node for the False branch are similar. Once the
LRCGraph has been compiled into an AC, all the inference
algorithms for ACs can be used for them.
Example 4. Let’s compile the LRCGraph in Figure 3(a) into
an AC. First, we look at the root supernode and generate the
DT in Figure 2(a). α and β in this figure correspond to the
ACs generated for the two branches going out of the node in
the root supernode. Following the branch where E = True,
we reach to a supernode containing a node for C. For this
supernode, we generate the AC in Figure 2(b), where θ and
ω represent the ACs generated for each of the two branches
going out of the node for C. Following the branch where C =
True, we will reach to a supernode with two nodes inside it.
For this supernode, we generate a product node having two
children representing the ACs for the two nodes inside this
supernode. This has been represented in Figure 2(c) where ζ

and φ correspond to the ACs generated for the two nodes in
this supernode respectively. We follow the same procedure
for all the branches and generate an AC from the LRCGraph.
Note that we can simplify this AC by replacing θ with two
children: ζ and φ .

ACs generated from compiling an LRCGraph have a spe-
cial structure. They consist of alternating rows of products
and summations, where each summation node is a DT for a
random variable. Due to the caching procedure when gener-
ating the LRCGraphs, the product nodes in the generated AC
only have one summation parent. This structure of the ACs
corresponds to the decision-DNNFs of Huang and Darwiche
(2007) with network parameters added to the AC.

Note that the product nodes of ACs generated from com-
piling LRCGraphs might have more than one children hav-
ing a numeric constant value. Having these values in sepa-
rate nodes enables pruning. Since we postpone multiplying

1If I(v) has been already generated and is in the circuit, we just
use it and avoid creating a new node.

these numbers to the inference (instead of compile) time, we
refer to these ACs as lazy ACs.
Definition 1. An arithmetic circuit that has been generated
for a BN by compiling an LRCGraph is called a lazy arith-
metic circuit (LAC).

When we compile an LRCGraph into an AC, we can also
take advantage of equal parameters in a CPT that are not due
to CSI. When two parameters in a CPT are equal, we have
two informedEdges in our LRCGraph containing the same
pair 〈CPT Index,Value〉. At compile time, we generate only
one node in the AC for these two pairs. Algorithm 1 can be
modified slightly to compile a BN directly into an LAC.

Pruning LACs
LACs can be pruned similar to LRCGraphs as follows:
• Given the query variables and the evidence, find all the

irrelevant variables in the original BN.
• For any irrelevant variable A, replace the DT of A with

either ATrue or AFalse.
• Remove all LAC nodes having a CPTIndex (as extra in-

formation) belonging to the CPT of an irrelevant variable.
• For any evidence C =Val, replace DT of C with CVal and

remove the nodes in the LAC containing c or ¬c.
• Replace any product or summation node having only one

child with its child node.
• During pruning, whenever the root of the LAC is a prod-

uct node, remove the child nodes (and their sub-ACs) only
having non-query variables in their sub-AC.

Example 5. Consider the BN in Figure 4 and suppose we
have generated the LAC on the right of the figure for this
network (for brevity, we have ignored the nodes containing
numeric constants). In order to answer the query P(E|c), we
can see that F is a barren variable, so we can only keep either
FTrue or FFalse. Let’s assume we keep FTrue. The root node is
a product node whose left sub-AC contains only non-query
variables, so we prune it and keep the AC rooted at the node
denoted by 1 in Figure 4. Since we have observed C = True,
we only keep the CTrue and remove the node for c. Since
CTrue only has one child, we can replace it by its child an
get the AC rooted at the node denoted by 2. B is d-separated
from the query given the observation, thus we can prune it
similarly. Then we have two separated LACs, where the first
one only contains non-query variables. Therefore, we can
only keep the second one (the triangle containing DE). We
can now perform inference on a small LAC containing only
D and E which is more efficient compared to the standard
algorithms that do not prune the AC and calculate the prob-
abilities for all variables.

Analyses and Comparisons
We compare inference algorithms based on standard ACs,
LACs, and (lazy) JTrees considering the amount of time re-
quired for compilation, time complexity of online inference,
the efficiency of inference algorithms, exploiting determin-
ism and local structure (or succinctness), and the ability to
be pruned based on the query and observation.

A

B

C

D

E

F

1

2

+
* *

𝑓 ¬𝑓 +

* *

𝑐 ¬𝑐 +

* *

𝑏 ¬𝑏

A DE

Figure 4: A BN used as motivating example in (Madsen and
Jensen 1999) and parts of an LAC generated for that.

Compiling Time
In order to exploit as much as the determinism and local
structure in CPTs as possible and generate succinct ACs, al-
gorithms for compiling BNs into ACs (e.g., (Chavira and
Darwiche 2005)) typically encode the network as a conjunc-
tive normal form (CNF), simplify the CNF based on the de-
terminism and local structure, compile the CNF into a struc-
ture called d-DNNF (Darwiche 2001a), take the minimum
cardinality of the d-DNNF, and substitute ORs and ANDs
in the d-DNNF with summations and products respectively.
Compiling a BN into LACs or JTrees does not require some
of these steps (such as CNF encoding/conversion or taking
the minimum cardinality) and involves less overhead. So the
compile time for LACs and JTrees is potentially less than
the aforementioned algorithms for ACs.

Complexity of Online Inference
The inference algorithms for lazy JTrees and LACs spend
some time on pruning the structure. For lazy JTrees, prun-
ing takes a linear time in the number of the variables. For
LACs, pruning take a time linear in the size of the pruned
LAC and irrelevant variables (sub-linear in the size of the
original LAC). For standard ACs, there is no pruning step.
Once the pruning is done for lazy JTrees and LACs, how-
ever, these two algorithms do inference on a data structure
which is potentially exponentially smaller than that of stan-
dard ACs.

Note that the inference algorithm for LACs involves some
overhead compared to standard ACs, because the multiplica-
tion of some numeric constants is postponed to the inference
(instead of compile) time. But this time is negligible if each
product node of the LAC has only a few children with nu-
meric constants. Lazy JTrees suffer more from this overhead
since they postpone the multiplication of the CPTs (or poten-
tials) to the inference time.

Inference Algorithm Efficiency
A JTree can be compiled into an AC with an specific struc-
ture: the AC alternates between summation and product
nodes and each product node has a single parent. This is
quite similar to the structure of the LACs. It has been shown
in (Park and Darwiche 2004) that inference on an AC with
such a structure is more efficient than inference on standard
ACs. Thus, inference can be done more efficiently on JTrees
and LACs than on standard ACs.

Determinism and Local Structure
The standard inference algorithms for JTrees cannot exploit
determinism and local structure. For LACs, we can exploit
determinism, context-specific independence (CSI), and also
take advantage of the equal parameters in the same CPT that
are not due to the CSI. Therefore, LACs can be more suc-
cinct that JTrees. However, the amount of local structure ex-
ploited by LACs depends on the branching order. Standard
ACs can also exploit determinism and take advantage of the
equal values in the same CPTs. Compilers for standard ACs
typically use logical reasoning techniques, allowing them
to (potentially) exploit more local structure than our com-
piler for LACs. Furthermore, LACs impose restrictions on
the structure of the final AC. Therefore, standard ACs can
be more succinct than LACs.

Pruning Based on Query and Observation
As discussed earlier, inference algorithms on standard ACs
find the probabilities for all random variables given evi-
dence. Therefore, they do not prune the AC if we only need
to query a subset of the variables. LACs have been devel-
oped with the motivation of being pruned based on the query
variables. All barren variables and those d-separated from
the query variables given the observation can be pruned from
the LAC. For JTrees, one can use the lazy propagation tech-
nique to be able to prune the JTree based on the query.

Conclusion
We introduced lazy recursive conditioning graphs (LRC-
Graphs) as a target data structure for compiling BNs into
and performing inference on them. We showed how LRC-
Graphs can be pruned given the query and the observation to
speed-up inference. We also identified a class of arithmetic
circuits (ACs) called lazy arithmetic circuits (LACs) that can
be obtained by compiling LRCGraphs into ACs. LACs are
capable of exploiting the determinism and the local struc-
ture inherent in the conditional probabilities, and they can
be pruned based on the observation and query in time sub-
linear in the size of the original LAC. In the future, we will
test LACs empirically on real-data and compare their run-
time and efficiency with inference algorithms for standard
ACs as well as (lazy) junction trees.

References
Boutilier, C.; Friedman, N.; Goldszmidt, M.; and Koller, D.
1996. Context-specific independence in Bayesian networks.
In Proceedings of UAI, 115–123.
Chavira, M., and Darwiche, A. 2005. Compiling Bayesian
networks with local structure. In IJCAI.
Darwiche, A. 2001a. On the tractability of counting theory
models and its application to belief revision and truth main-
tenance. Journal of Applied Non-Classical Logics 11(1-
2):11–34.
Darwiche, A. 2001b. Recursive conditioning. Artificial
Intelligence 126(1-2):5–41.

Darwiche, A. 2002. A logical approach to factoring belief
networks. In Proceedings of International Conference on
Knowledge Representation and Reasoning, 409–420.
Darwiche, A. 2003. A differential approach to inference in
Bayesian networks. Journal of the ACM (JACM) 50(3):280–
305.
Dechter, R. 1996. Bucket elimination: a unifying framework
for probabilistic inference. In Proceedings of the twelfth
international conference on uncertainty in artificial intelli-
gence (UAI), 211–219. Morgan Kaufmann.
Dechter, R. 2003. Constraint Processing. Morgan Kauf-
mann, San Fransisco, CA.
Geiger, D.; Verma, T. S.; and Pearl, J. 1990. d-separation:
From theorems to algorithms. In Uncertainty in Artificial
Intelligence, 139–148.
Huang, J., and Darwiche, A. 2007. The language of search.
Journal of Artificial Intelligence Research (JAIR) 29:191–
219.
Jensen, F. V.; Lauritzen, S. L.; and Olesen, K. G. 1990.
Bayesian updating in causal probabilistic networks by lo-
cal computations. Computational statistics quarterly 4 269–
282.
Kazemi, S. M., and Poole, D. 2014. Elimination ordering
in first-order probabilistic inference. In Proc. of Association
for the Advancements of Artificial Intelligence (AAAI).
Kjaerulff, U. 1985. Triangulation of graphs–algorithms giv-
ing small total state space. Technical report, Deptartment
of Mathematics and Computer Science, Aalborg University,
Denmark.
Koller, D., and Friedman, N. 2009. Probabilistic Graphical
Models: Principles and Techniques. MIT Press, Cambridge,
MA.
Lauritzen, S. L., and Spiegelhalter, D. J. 1988. Local com-
putations with probabilities on graphical structures and their
application to expert systems. Journal of the Royal Statisti-
cal Society. Series B (Methodological) 157–224.
Madsen, A. L., and Jensen, F. V. 1999. Lazy propagation: a
junction tree inference algorithm based on lazy evaluation.
Artificial Intelligence 113(1):203–245.
Park, J., and Darwiche, A. 2004. A differential semantics for
jointree algorithms. Artificial Intelligence 156(2):197–216.
Pearl, J. 1988. Probabilistic Reasoning in Intelligent Sys-
tems: Networks of Plausible Inference. San Mateo, CA:
Morgan Kaumann.
Poole, D., and Zhang, N. L. 2003. Exploiting contextual
independence in probabilistic inference. Journal of Artificial
Intelligence Research 18:263–313.
Shachter, R. D. 1986. Evaluating influence diagrams. Op-
erations research 34(6):871–882.
Shafer, G. R., and Shenoy, P. P. 1990. Probability prop-
agation. Annals of Mathematics and Artificial Intelligence
2(1-4):327–351.
Zhang, N. L., and Poole, D. 1994. A simple approach to
Bayesian network computations. In Proceedings of the 10th
Canadian Conference on AI, 171–178.

