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Learning objectives

e different types of missing data
e learning with missing data and hidden vars:

m directed models
m undirected models

e develop an intuition for expectation maximization
= variational interpretation
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Two settings for partial observations

e missing data

original causes

B eachinstance in P is missing some values
e hidden variables
m variables that are never observed — mediatingcause

latent variable models effect

® observations have common cause
® widely used in machine learning
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Learning with MCAR

missing completely at random (MCAR) P(X,0) = P(X)P(0)

heads

A

tails

heads

A

tails

p(z) = 6%(1 — )% throw to generate

p(o) = ¥°(1 — §)'7° throw to decide show/hide
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Learning with MCAR

SR SN C e U IO N (X, O) = P(X)P(0)

| z O
heads tails ] o
K ‘ _nT o 11—z e
p(xz) =0%(1 —6) throw to generate
heads tails @
K | p(o) = ¥°(1 — 0)1—0 throw to decide show/hide

. . M
objective: learn a model for X, from the data D ={z{’,..., 25"}
each x, may include values for a different subset of vars.



Learning with MCAR

SR SN C R U IO (X, O) = P(X)P(0)

| (o @
heads tails
K ‘ _NnT 1—x e
p(xz) =0%(1 —6) throw to generate
heads tails @
K | p(o) = ¥°(1 — ())1*0 throw to decide show/hide

objective: learn a model for X, from the data D ={z{’,..., 25"}
each x, may include values for a different subset of vars.

since P(x,0)=P(X)P(0), we can ignore the obs. patterns

optimize: 4(D,0) =3, plogd ., p(zo, 1)
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A more general criteria
Ox L X3 X,

if there is information about the obs. pattern Oxin Xj
thenitisalsoin x,

missing at random °

if X2 =1 hide Xi
missing completely at random Q

throw the thumb-tack twice X =[xy, X,] I
otherwise show Xi

example

since there is no "extra" information in the obs. pattern, we can ignore it

OJulgglP4R £ (D,0) = >, plogd . p(zo, )



marginal Likelihood function
for partial observations

e fully observed data:

@

©®

= directed: likelihood decomposes
= undirected: does not decompose, but it is concave

partially observed:
= does not decompose likelihood for a single assignment
to the latent .
= Not convex anymore A

L(O|D)

(D,0) =>, cplogd . p(zo,zn)

\ 4




marginal Likelihood function: example
for a directed model

fully observed case decomposes:
E(D’ 0) — Zx,y,zeD logp(a:’ Y, Z)
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marginal Likelihood function: example
for a directed model

fully observed case decomposes:

E(D’ 0) — Zx,y,zeD logp(a:’ Y, Z)

— ¥, logp(a) + X, log p(y|z) + 3, log p(z|x) @

X IS always missing (e.g.,in a latent variable model)

£D,0) =3, cplog)_, p(z)p(ylz)p(z|z)

cannot decompose it!
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Parameter learning with missing data

Directed models:

option 1: obtain the gradient of marginal likelihood

option 2: expectation maximization (EM)

® variational interpretation (in terms of free energy)
® variational EM
® Bayesian approach: variational Bayes

undirected models:

obtain the gradient of marginal likelihood

all of these options
need inference for each step of
learning

e EMis not a good option here



Directed models: gradient of the marginal likelihood

log marginal likelihood: e

UD) = 30 e arep 108 X, p(a)p(B)p(cla, b)p(dlc) G niden




Directed models: gradient of the marginal likelihood

log marginal likelihood: e

UD) = 30 e arep 108 X, p(a)p(B)p(cla, b)p(dlc) G hiaden

simply take the derivative:

0
Op(d'|c) K(D) - p(d}|c’) Z(a,c,d)ED p(d,7 c’\a, C, d)

need inference for this
what happens to this expression if every variable is observed?



Directed models: gradient of the marginal likelihood

log marginal likelihood: e

UD) = 30 e arep 108 X, p(a)p(B)p(cla, b)p(dlc) G niden

simply take the derivative:

8p(3’|c’) K(D) - p(d}|c’) Z(a,c,d)ED p(d,7 Cl‘aﬂ C, d)

need inference for this
what happens to this expression if every variable is observed?

if the cond. prob. is parameterized, use the chain rule:

0U(D) Op(d|c
a0(D;0) = (¢ d)eD 5p(c(l’|c)’) p(ae‘ )
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Directed models: expectation maximization

E-step:
for each a,c,d € D
use the current parameters @ to get the marginals

hidden

olc

more generally: expected sufficient statistics

p(B|D;05),p(A|D;04),p(A, B,C|D;0¢a8),p(D,C|D;0pc)

p(B =V'|D;6p) = % Z(a,c,d)eD p(b'|a,c,d; 0p)

need inference here

M-step:
use the marginals (similar to completely observed data) to learn 6

more generally: expected sufficient statistics

E.g., update 6Ocja,B using p(A4,B,C|D;0c4,) 9 CiA,B

_ p(A,B7C|D;GC\A,B)
~ p(A,B|D;0c|a,B)




Example: Gaussian mixture model

I(x=k
p(w; 1) = [T m ™"

model parameters

@ ples (0 2) = e (= — o) 80 — )



Example: Gaussian mixture model

I(x=k
p(w; 1) = [Lm ™"

model parameters

1

@ p(y|e; W ) = \/mexp(—%(y—ﬂw)TE;l(y—um))

E-step: calculate p(x|y) foreach y € D
p(zly) o< p(z; m)p(ylz; 1, B) = meN (y; g, Ti)

e now we have "probabilistically completed" instances
e update the parameters (easy in a Bayes-net)



Example: Gaussian mixture model

I(x=k
p(w; 1) = [T m ™"

model parameters

@ p(y|e; W ) = \/pir—ZAexp(—%(y—ﬂx)TE;l(y—um))

M-step: estimate 7, ux, 2xVEk

p(z=k
=N Zyep &ka?‘y) portion of all particles assigned to this cluster (sum of probs.)

_ 2yep p(z=kly)y . .
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Example: Gaussian mixture model

I(x=k
p(w; 1) = [T m ™"

model parameters

@ p(yles (o, 50 }) = e P2 (Y — 1) T2 (Y — )

M-step: estimate 7, ux, 2xVEk

p(z=k
=N Zyep Z:MT% portion of all particles assigned to this cluster (sum of probs.)

_ Dyep p(z=kly)y . .
Pl = > cp P(x=k[y) mean of a weighted set of instances

Y S yep P(@=kly) (y—p) (y—p)"
ko 0 PE—k]y)

covariance of a weighted set of instances

=========




Directed models: expectation maximization

E-step:
for each a,c,d € D
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Directed models: expectation maximization

E-step:
for each a,c,d € D
use the current parameters @ to get the marginals

M-step:
use the marginals (similar to completely observed data) to learn 0

® guaranteed to improve the likelihood at each step A

~

|
I
I
I
I
I
I
4

B firstinitial steps quickly improve the likelihood, then slows down

L(61D)

® converges to a local optimum:

u multiple restarts are useful

- =

\/

® for undirected models: M-step is the expensive part

B perform E-step within each iteration of M-step: equivalent to gradient descent



expectation maximization: example

® 1000 training instances
® 50% of variables are observed (in each instance) 10
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expectation maximization: example

® 1000 training instances

Parameter value

50% of variables are observed (in each instance)

0.9
0.8}
0.7}
0.6
0.5
0.4
0.3}
0.2}
041F

0
0

change in different parameter values

Iteration

fast initial improvement

train log-likelihood
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0 5 10 15 20 25 30 35 40 45 50
Iteration

test log-likelihood

-10

=20}
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40|
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Iteration



expectation maximization: example

local optima in EM:

number of local maxima effect of multiple restarts
25 I. - - - - r T J’ T T T T T T T T T
—143}
= o
— Q
| § —14.35
g z
g 5 -l44)
b7 -
s £
s £ 14451
I+ s| | 25% missing
% - 50% Missing
--o-- Hidden variable -14.5¢
O L L L 1 L L L L L Il 1 1 1 L L
0 500 1000 1500 2000 2500 3000 3500 4000 10 20 30 40 50 60 70 80 90 100
alarm network Sample size Precentage of runs

a single hidden variable
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Variational interpretation of EM

pOSteriOI’ p(h|D, 0) — P}()i(lbD,é? a role similar to the partition function Z(G)

Dkr(q(h); p(h|D,0)) = —H(q) — Eq[log p(h, D; 0)] + log p(D; 0)

negative of variational free energy  we want to maximize this!

{(D;0) = H(q) + Eqllog p(h, D;0)] + Dxr(q(h); p(h|D,0))

evidence lower bound (ELBO) is a lower-bound on the likelihood

EM: perform block coordinate ascent

® optimize g to match the posterior (i.e., obtain the posterior)

® optimize @ to increase ELBO



Variational interpretation of EM

£(D;0) = H(q) + Eq[log p(h, D; 0)| + Dx1(q(h); p(h|D, 0))

evidence lower bound (ELBO) is a lower-bound on the likelihood

this interpretation also leads to:

variational EM;

® use a family g and approximate variational inference to obtain q

variational Bayes:

® add a prior p(@) and get a posterior over both latent vars (h) and parameters 0
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Undirected models with latent variables

linear exponential family p(;0) = 7757 exp((0, ¢(z)))

gradient in the fully observed setting ~ Vs£(6, D) = |D|(Ep[¢(z)] — Ep,[4(2)])

L

expectation wrt the data expectation wrt the model

partial observation: = = (., zs)

marginal likelihood: p(z:;0) =3, 75 exp((8, 6(2)))



Undirected models with latent variables

linear exponential family p(;0) = 7757 exp((0, ¢(z)))

gradient in the fully observed setting ~ Vs£(6, D) = |D|(Ep[¢(z)] — Ep,[6(2)])

L

expectation wrt the data expectation wrt the model

partial observation: = = (., zs)

marginal likelihood: »(z.;0) = 3., 7 exp((9, ¢(2)))

gradient in the partially obs. case Vol(0,D) = |D|(Epy[d(z)] — Ep[p()])

!

wrt both data and model: we need to do inference to calculate expected sufficient statistics (similar to EM)
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Example: Restricted Boltzmann Machine

recall the vnay RBM:  p(h,v) = 55 exp(X, ; 0; jvih;)

data: D= {v™}, for v, h; € {0,1}

sufficient statistics:  é(vi, hj) = vi, h;

we want to optimize: 4(D;0) = X ,cplog 32, 75y exp(3; ; 0i5vihy)

gradient: 5 4(D;0) « Epy[vih] — By, [vih]
= (37 Lvep Ens 1 [vi]) — Epy[vih5])

use Gibbs sampling:

sampling-based inference: sample h | v
sample both h,v using current parameters



summary

learning with partial observations:

e missing data
® optimize the likelihood when missing at random
e |atent variables

B can produce expressive probabilistic models

problem is not convex
how to learn the model?

® directly estimate the gradient

I both cases require inference within each step
® useEM



