Graphical Models

Learning with partial observations

Learning objectives

- different types of missing data
- learning with missing data and hidden vars:
- directed models
- undirected models
- develop an intuition for expectation maximization
- variational interpretation

Two settings for partial observations

- missing data
- each instance in \mathcal{D} is missing some values

Two settings for partial observations

- missing data
- each instance in \mathcal{D} is missing some values
- hidden variables
- variables that are never observed

Two settings for partial observations

- missing data
- each instance in \mathcal{D} is missing some values
- hidden variables
- variables that are never observed
latent variable models

- observations have common cause
- widely used in machine learning

Missing data

observation mechanism:

- generate the data point $X=\left[X_{1}, \ldots, X_{D}\right]$
- decide the values to observe $O_{X}=[1,0, \ldots, 0,1]$

Missing data

observation mechanism:

- generate the data point $X=\left[X_{1}, \ldots, X_{D}\right]$
- decide the values to observe $O_{X}=[1,0, \ldots, 0,1]$
hide observe
- observe X_{o} while X_{h} is missing $\left(X=X_{h}+X_{o}\right)$

Missing data

observation mechanism:

- generate the data point $X=\left[X_{1}, \ldots, X_{D}\right]$
- decide the values to observe $O_{X}=[1,0, \ldots, 0,1]$ hide observe
- observe X_{o} while X_{h} is missing $\left(X=X_{h}+X_{o}\right)$
missing completely at random (MCAR) $\quad P\left(X, O_{X}\right)=P(X) P\left(O_{X}\right)$

Missing data

observation mechanism:

- generate the data point $X=\left[X_{1}, \ldots, X_{D}\right]$
- decide the values to observe $O_{X}=[1,0, \ldots, 0,1]$
hide observe
- observe X_{o} while X_{h} is missing $\left(X=X_{h}+X_{o}\right)$
missing completely at random (MCAR) $\quad P\left(X, O_{X}\right)=P(X) P\left(O_{X}\right)$

Missing data

observation mechanism:

- generate the data point $X=\left[X_{1}, \ldots, X_{D}\right]$
- decide the values to observe $O_{X}=[1,0, \ldots, 0,1]$
hide observe
- observe X_{o} while X_{h} is missing $\left(X=X_{h}+X_{o}\right)$
missing completely at random (MCAR) $\quad P\left(X, O_{X}\right)=P(X) P\left(O_{X}\right)$

Learning with MCAR

Learning with MCAR

objective: learn a model for X , from the data $\mathcal{D}=\left\{x_{o}^{(1)}, \ldots, x_{o}^{(M)}\right\}$

[^0]
Learning with MCAR

missing completely at random (MCAR) $P(X, O)=P(X) P(O)$

$$
\begin{array}{ll}
p(x)=\theta^{x}(1-\theta)^{1-x} & \text { throw to generate } \\
p(o)=\psi^{o}(1-\theta)^{1-o} & \text { throw to decide show/hide }
\end{array}
$$

objective: learn a model for X, from the data $\mathcal{D}=\left\{x_{o}^{(1)}, \ldots, x_{o}^{(M)}\right\}$
each x_{o} may include values for a different subset of vars.
since $P(X, O)=P(X) P(O)$, we can ignore the obs. patterns
optimize: $\ell(\mathcal{D}, \theta)=\sum_{x_{o} \in \mathcal{D}} \log \sum_{x_{h}} p\left(x_{o}, x_{h}\right)$

A more general criteria

missing at random (MAR) $O_{X} \perp X_{h} \mid X_{o}$
if there is information about the obs. pattern O_{X} in X_{h} then it is also in X_{o}

A more general criteria

missing at random (MAR) $\quad O_{X} \perp X_{h} \mid X_{o}$
if there is information about the obs. pattern O_{X} in X_{h} then it is also in X_{o}throw the thumb-tack twice $X=\left[X_{1}, X_{2}\right]$
if $X_{2}=1$ hide X_{1}
otherwise show X_{1}

A more general criteria

missing at random (MAR) $\quad O_{X} \perp X_{h} \mid X_{o}$
if there is information about the obs. pattern O_{X} in X_{h} then it is also in X_{o}

since there is no "extra" information in the obs. pattern, we can ignore it
optimize: $\ell(\mathcal{D}, \theta)=\sum_{x_{o} \in \mathcal{D}} \log \sum_{x_{h}} p\left(x_{o}, x_{h}\right)$

marginal Likelihood function

for partial observations

- fully observed data:
- directed: likelihood decomposes
- undirected: does not decompose, but it is concave
- partially observed:- does not decompose
- not convex anymore

$$
\ell(\mathcal{D}, \theta)=\sum_{x_{o} \in \mathcal{D}} \log \sum_{x_{h}} p\left(x_{o}, x_{h}\right)
$$

likelihood for a single assignment to the latent vars.

marginal Likelihood function: example

for a directed model
fully observed case decomposes:

$$
\begin{aligned}
\ell(D, \theta) & =\sum_{x, y, z \in \mathcal{D}} \log p(x, y, z) \\
& =\sum_{x} \log p(x)+\sum_{x, y} \log p(y \mid x)+\sum_{x, z} \log p(z \mid x)
\end{aligned}
$$

marginal Likelihood function: example

for a directed model
fully observed case decomposes:

$$
\begin{aligned}
\ell(D, \theta) & =\sum_{x, y, z \in \mathcal{D}} \log p(x, y, z) \\
& =\sum_{x} \log p(x)+\sum_{x, y} \log p(y \mid x)+\sum_{x, z} \log p(z \mid x)
\end{aligned}
$$

x is always missing (e.g., in a latent variable model)

$$
\begin{gathered}
\ell(D, \theta)=\sum_{y, z \in \mathcal{D}} \log \sum_{x} p(x) p(y \mid x) p(z \mid x) \\
\text { cannot decompose it! }
\end{gathered}
$$

Parameter learning with missing data

Directed models:
option 1: obtain the gradient of marginal likelihood
option 2: expectation maximization (EM)

- variational interpretation (in terms of free energy)
- variational EM
- Bayesian approach: variational Bayes

Parameter learning with missing data

Directed models:
option 1: obtain the gradient of marginal likelihood
option 2: expectation maximization (EM)

- variational interpretation (in terms of free energy)
- variational EM
- Bayesian approach: variational Bayes
undirected models:
obtain the gradient of marginal likelihood
- EM is not a good option here

Parameter learning with missing data

Directed models:
option 1: obtain the gradient of marginal likelihood
option 2: expectation maximization (EM)

- variational interpretation (in terms of free energy)
- variational EM
- Bayesian approach: variational Bayes
undirected models:
obtain the gradient of marginal likelihood
- EM is not a good option here
all of these options need inference for each step of learning

Directed models: gradient of the marginal likelihood

log marginal likelihood:

$$
\ell(\mathcal{D})=\sum_{(a, c, d) \in \mathcal{D}} \log \sum_{b} p(a) p(b) p(c \mid a, b) p(d \mid c)
$$

Directed models: gradient of the marginal likelihood

log marginal likelihood:

$$
\ell(\mathcal{D})=\sum_{(a, c, d) \in \mathcal{D}} \log \sum_{b} p(a) p(b) p(c \mid a, b) p(d \mid c)
$$

simply take the derivative:

$$
\frac{\partial}{\partial p\left(d^{\prime} \mid c^{\prime}\right)} \ell(\mathcal{D})=\frac{1}{p\left(d^{\prime} \mid c^{\prime}\right)} \sum_{(a, c, d) \in \mathcal{D}} p\left(d^{\prime}, c^{\prime} \mid a, c, d\right)
$$

Directed models: gradient of the marginal likelihood

log marginal likelihood:

$$
\ell(\mathcal{D})=\sum_{(a, c, d) \in \mathcal{D}} \log \sum_{b} p(a) p(b) p(c \mid a, b) p(d \mid c)
$$

simply take the derivative:

$$
\frac{\partial}{\partial p\left(d^{\prime} \mid c^{\prime}\right)} \ell(\mathcal{D})=\frac{1}{p\left(d^{\prime} \mid c^{\prime}\right)} \sum_{(a, c, d) \in \mathcal{D}} p\left(d^{\prime}, c^{\prime} \mid a, c, d\right)
$$

need inference for this
what happens to this expression if every variable is observed?
if the cond. prob. is parameterized, use the chain rule:

$$
\frac{\partial}{\partial \theta} \ell(\mathcal{D} ; \theta)=\sum_{\left(c^{\prime}, d^{\prime}\right) \in \mathcal{D}} \frac{\partial \ell(\mathcal{D})}{\partial p\left(d^{\prime} \mid c^{\prime}\right)} \frac{\partial p\left(d^{\prime} \mid c^{\prime}\right)}{\partial \theta}
$$

Directed models: expectation maximization

E-step:

for each $a, c, d \in \mathcal{D}$
use the current parameters θ to get the marginals
more generally: expected sufficient statistics

Directed models: expectation maximization

E-step:

for each $a, c, d \in \mathcal{D}$
use the current parameters θ to get the marginals
more generally: expected sufficient statistics

$$
\begin{gathered}
p\left(B \mid \mathcal{D} ; \theta_{B}\right), p\left(A \mid \mathcal{D} ; \theta_{A}\right), p\left(A, B, C \mid \mathcal{D} ; \theta_{C \mid A, B}\right), p\left(D, C \mid \mathcal{D} ; \theta_{D \mid C}\right) \\
\quad \downarrow \\
p\left(B=b^{\prime} \mid \mathcal{D} ; \theta_{B}\right)=\frac{1}{N} \sum_{(a, c, d) \in \mathcal{D}} p\left(b^{\prime} \mid a, c, d ; \theta_{B}\right) \\
\text { need inference....................... }
\end{gathered}
$$

Directed models: expectation maximization

E-step:

for each $a, c, d \in \mathcal{D}$
use the current parameters θ to get the marginals
more generally: expected sufficient statistics

$$
\begin{aligned}
& p\left(B \mid \mathcal{D} ; \theta_{B}\right), p\left(A \mid \mathcal{D} ; \theta_{A}\right), p\left(A, B, C \mid \mathcal{D} ; \theta_{C \mid A, B}\right), p\left(D, C \mid \mathcal{D} ; \theta_{D \mid C}\right) \\
& \downarrow \\
& p\left(B=b^{\prime} \mid \mathcal{D} ; \theta_{B}\right)=\frac{1}{N} \sum_{(a, c, d) \in \mathcal{D}} p\left(b^{\prime} \mid a, c, d ; \theta_{B}\right) \\
& \text { need inference.................. }
\end{aligned}
$$

M-step:

use the marginals (similar to completely observed data) to learn θ
more generally: expected sufficient statistics

Directed models: expectation maximization

E-step:

for each $a, c, d \in \mathcal{D}$
use the current parameters θ to get the marginals
more generally: expected sufficient statistics

$$
\begin{aligned}
& p\left(B \mid \mathcal{D} ; \theta_{B}\right), p\left(A \mid \mathcal{D} ; \theta_{A}\right), p\left(A, B, C \mid \mathcal{D} ; \theta_{C \mid A, B}\right), p\left(D, C \mid \mathcal{D} ; \theta_{D \mid C}\right) \\
& \downarrow \\
& p\left(B=b^{\prime} \mid \mathcal{D} ; \theta_{B}\right)=\frac{1}{N} \sum_{(a, c, d) \in \mathcal{D}} p\left(b^{\prime} \mid a, c, d ; \theta_{B}\right) \\
& \text { need inference.................. }
\end{aligned}
$$

M-step:

use the marginals (similar to completely observed data) to learn θ
more generally: expected sufficient statistics
E.g., update $\theta_{C \mid A, B}$ using $\quad p\left(A, B, C \mid \mathcal{D} ; \theta_{C \mid A, B} \quad \longrightarrow \quad \theta_{C \mid A, B}^{\text {new }}=\frac{p\left(A, B, C \mid \mathcal{D} ; \theta_{C \mid A, B}\right)}{p\left(A, B \mid \mathcal{D} ; \theta_{C \mid A, B)}\right.}\right.$

Example: Gaussian mixture model

$$
\begin{aligned}
& x p(x ; \pi)=\prod_{k} \pi_{k}^{\mathbb{I}(x=k)} \\
& \text { model parameters } \\
& p\left(y \mid x ;\left\{\mu_{k}, \Sigma_{k}\right\}\right)=\frac{1}{\sqrt{\left|2 \pi \Sigma_{x}\right|}} \exp \left(-\frac{1}{2}\left(y-\mu_{x}\right)^{T} \Sigma_{x}^{-1}\left(y-\mu_{x}\right)\right)
\end{aligned}
$$

Example: Gaussian mixture model

E-step: calculate $p(x \mid y)$ for each $y \in \mathcal{D}$

$$
p(x \mid y) \propto p(x ; \pi) p(y \mid x ; \mu, \Sigma)=\pi_{k} \mathcal{N}\left(y ; \mu_{k}, \Sigma_{k}\right)
$$

- now we have "probabilistically completed" instances
- update the parameters (easy in a Bayes-net)

Example: Gaussian mixture model

M-step: estimate $\pi, \mu_{k}, \Sigma_{k} \forall k$
$\pi_{k}=\frac{1}{N} \sum_{y \in \mathcal{D}} \frac{p(x=k \mid y)}{\sum_{k^{\prime}} p\left(x=k^{\prime} \mid y\right)} \quad$ portion of all particles assigned to this cluster (sum of probs.)
$\mu_{k}=\frac{\sum_{y \in \mathcal{D}} p(x=k \mid y) y}{\sum_{y \in \mathcal{D}} p(x=k \mid y)} \quad$ mean of a weighted set of instances
$\Sigma_{k}=\frac{\sum_{y \in \mathcal{D}} p(x=k \mid y)\left(y-\mu_{k}\right)\left(y-\mu_{k}\right)^{T}}{\sum_{y \in \mathcal{D}} p(x=k \mid y)}$ covariance of a weighted set of instances

Example: Gaussian mixture model

M-step: estimate $\pi, \mu_{k}, \Sigma_{k} \forall k$
$\pi_{k}=\frac{1}{N} \sum_{y \in \mathcal{D}} \frac{p(x=k \mid y)}{\sum_{k^{\prime}} p\left(x=k^{\prime} \mid y\right)} \quad$ portion of all particles assigned to this cluster (sum of probs.)

$\mu_{k}=\frac{\sum_{y \in \mathcal{D}} p(x=k \mid y) y}{\sum_{y \in \mathcal{D}} p(x=k \mid y)} \quad$ mean of a weighted set of instances
$\Sigma_{k}=\frac{\sum_{y \in \mathcal{D}} p(x=k \mid y)\left(y-\mu_{k}\right)\left(y-\mu_{k}\right)^{T}}{\sum_{y \in \mathcal{D}} \mathcal{D}(x=k \mid y)}$ covariance of a weighted set of instances

Directed models: expectation maximization

E-step:

for each $a, c, d \in \mathcal{D}$
use the current parameters θ to get the marginals

M-step:
use the marginals (similar to completely observed data) to learn θ

- guaranteed to improve the likelihood at each step
- first initial steps quickly improve the likelihood, then slows down

Directed models: expectation maximization

E-step:

for each $a, c, d \in \mathcal{D}$
use the current parameters θ to get the marginals

M-step:

use the marginals (similar to completely observed data) to learn θ

- guaranteed to improve the likelihood at each step
- first initial steps quickly improve the likelihood, then slows down
- converges to a local optimum:
- multiple restarts are useful

Directed models: expectation maximization

E-step:

for each $a, c, d \in \mathcal{D}$
use the current parameters θ to get the marginals

M-step:

use the marginals (similar to completely observed data) to learn θ

- guaranteed to improve the likelihood at each step
- first initial steps quickly improve the likelihood, then slows down
- converges to a local optimum:
- multiple restarts are useful
- for undirected models: M-step is the expensive part

- perform E-step within each iteration of M-step: equivalent to gradient descent

expectation maximization: example

- 1000 training instances
- 50% of variables are observed (in each instance)

fast initial improvement.

expectation maximization: example

- 1000 training instances
- 50% of variables are observed (in each instance)
change in different parameter values

expectation maximization: example

```
local optima in EM:
```


alarm network
number of local maxima

effect of multiple restarts

Variational interpretation of EM

$$
\text { posterior } \quad p(h \mid \mathcal{D} ; \theta)=\frac{p(h, \mathcal{D} ; \theta)}{p(\mathcal{D} ; \theta)} \quad \text { a role similar to the partition function } Z(\theta)
$$

Variational interpretation of EM

posterior $\quad p(h \mid \mathcal{D} ; \theta)=\frac{p(h, \mathcal{D} ; \theta)}{p(\mathcal{D} ; \theta)} \quad$ a role e similar to the partition function $Z(\theta)$

$$
D_{K L}(q(h) ; p(h \mid \mathcal{D}, \theta))=\underset{\text { negative of variational free energy }}{-H(q)-\mathbb{E}_{q}[\log p(h \mathcal{D} ; \theta)]}+\underset{\text { we want to maximize this! }}{\log p(\mathcal{D} ; \theta)}
$$

Variational interpretation of EM

posterior $\quad p(h \mid \mathcal{D} ; \theta)=\frac{p(h, \mathcal{D} ; \theta)}{p(\mathcal{D} ; \theta)} \quad$ a role similar to the partition function $Z(\theta)$

$$
D_{K L}(q(h) ; p(h \mid \mathcal{D}, \theta))=\underset{\text { negative of variational free energy }}{-H(q)-\mathbb{E}_{q}[\log p(h, \mathcal{D} ; \theta)]}+\underset{\text { we want to maximize this! }}{\log p(\mathcal{D} ; \theta)}
$$

$$
\ell(\mathcal{D} ; \theta)=H(q)+\mathbb{E}_{q}[\log p(h, \mathcal{D} ; \theta)]+D_{K L}(q(h) ; p(h \mid \mathcal{D}, \theta))
$$

evidence lower bound (ELBO) is a lower-bound on the likelihood

Variational interpretation of EM

posterior $\quad p(h \mid \mathcal{D} ; \theta)=\frac{p(h, \mathcal{D} ; \theta)}{p(\mathcal{D} ; \theta)} \quad$ a role similar to the partition function $Z(\theta)$

$$
D_{K L}(q(h) ; p(h \mid \mathcal{D}, \theta))=\underset{ }{-} \underset{\text { negative of variational free energy }}{-H(q)-\mathbb{E}_{q}[\log p(h, \mathcal{D} ; \theta)]+\log p(\mathcal{D} ; \theta)}
$$

$$
\ell(\mathcal{D} ; \theta)=H(q)+\mathbb{E}_{q}[\log p(h, \mathcal{D} ; \theta)]+D_{K L}(q(h) ; p(h \mid \mathcal{D}, \theta))
$$

evidence lower bound (ELBO) is a lower-bound on the likelihood

EM: perform block coordinate ascent

- optimize q to match the posterior (i.e., obtain the posterior)
- optimize θ to increase ELBO

Variational interpretation of EM

$$
\ell(\mathcal{D} ; \theta)=H(q)+\mathbb{E}_{q}[\log p(h, \mathcal{D} ; \theta)]+D_{K L}(q(h) ; p(h \mid \mathcal{D}, \theta))
$$

evidence lower bound (ELBO) is a lower-bound on the likelihood
this interpretation also leads to:

variational EM:

- use a family q and approximate variational inference to obtain q

variational Bayes:

- add a prior $p(\theta)$ and get a posterior over both latent vars (h) and parameters θ

Undirected models with latent variables

linear exponential family

$$
p(x ; \theta)=\frac{1}{Z(\theta)} \exp (\langle\theta, \phi(x)\rangle)
$$

gradient in the fully observed setting

$$
\nabla_{\theta} \ell(\theta, \mathcal{D})=|\mathcal{D}|\left(\mathbb{E}_{\mathcal{D}}[\phi(x)]-\mathbb{E}_{p_{\theta}}[\phi(x)]\right)
$$

Undirected models with latent variables

partial observation: $x=\left(x_{o}, x_{h}\right)$

Undirected models with latent variables

$\begin{array}{ll}\text { linear exponential family } & p(x ; \theta)=\frac{1}{Z(\theta)} \exp (\langle\theta, \phi(x)\rangle) \\ \text { gradient in the fully observed setting } & \nabla_{\theta} \ell(\theta, \mathcal{D})=|\mathcal{D}|\left(\mathbb{E}_{\mathcal{D}}[\phi(x)]-\mathbb{E}_{p \theta}[\phi(x)]\right) \\ & \underbrace{\downarrow}_{\text {expectation wrt the data }} \\ & \downarrow\end{array}$
partial observation: $x=\left(x_{o}, x_{h}\right)$
not observed
marginal likelihood: $\quad p\left(x_{o} ; \theta\right)=\sum_{x_{h}} \frac{1}{Z(\theta)} \exp (\langle\theta, \phi(x)\rangle)$

Undirected models with latent variables

|
linear exponential family

$$
p(x ; \theta)=\frac{1}{Z(\theta)} \exp (\langle\theta, \phi(x)\rangle)
$$

gradient in the fully observed setting
$\nabla_{\theta} \ell(\theta, \mathcal{D})=|\mathcal{D}|\left(\mathbb{E}_{\mathcal{D}}[\phi(x)]-\mathbb{E}_{p_{\theta}}[\phi(x)]\right)$

expectation wrt the data expectation wrt the model
partial observation: $x=\left(x_{o}, x_{h}\right)$
not observed
marginal likelihood: $\quad p\left(x_{0} ; \theta\right)=\sum_{x_{h}} \frac{1}{Z(\theta)} \exp (\langle\theta, \phi(x)\rangle)$
gradient in the partially obs. case

$$
\begin{gathered}
\nabla_{\theta} \ell(\theta, \mathcal{D})=|\mathcal{D}|\left(\mathbb{E}_{\mathcal{D}, \theta}[\phi(x)]-\mathbb{E}_{p_{\theta}}[\phi(x)]\right) \\
\downarrow
\end{gathered}
$$

Example: Restricted Boltzmann Machine

data: $\mathcal{D}=\left\{v^{(m)}\right\}_{m}$
for $\quad v_{i}, h_{j} \in\{0,1\}$

Example: Restricted Boltzmann Machine

data: $\mathcal{D}=\left\{v^{(m)}\right\}_{m}$ for $\quad v_{i}, h_{j} \in\{0,1\}$

sufficient statistics: $\quad \phi\left(v_{i}, h_{j}\right)=v_{i}, h_{j}$

Example: Restricted Boltzmann Machine

recall the binary RBM: $\quad p(h, v)=\frac{1}{Z(\theta)} \exp \left(\sum_{i, j} \theta_{i, j} v_{i} h_{j}\right)$
data: $\mathcal{D}=\left\{v^{(m)}\right\}_{m}$ for $v_{i}, h_{j} \in\{0,1\}$

sufficient statistics: $\quad \phi\left(v_{i}, h_{j}\right)=v_{i}, h_{j}$
we want to optimize: $\ell(\mathcal{D} ; \theta)=\sum_{v \in \mathcal{D}} \log \sum_{h} \frac{1}{Z(\theta)} \exp \left(\sum_{i, j} \theta_{i, j} v_{i} h_{j}\right)$

Example: Restricted Boltzmann Machine

recall the binary RBM: $\quad p(h, v)=\frac{1}{Z(\theta)} \exp \left(\sum_{i, j} \theta_{i, j} v_{i} h_{j}\right)$
data: $\mathcal{D}=\left\{v^{(m)}\right\}_{m}$ for $v_{i}, h_{j} \in\{0,1\}$

sufficient statistics: $\quad \phi\left(v_{i}, h_{j}\right)=v_{i}, h_{j}$
we want to optimize: $\ell(\mathcal{D} ; \theta)=\sum_{v \in \mathcal{D}} \log \sum_{h} \frac{1}{Z(\theta)} \exp \left(\sum_{i, j} \theta_{i, j} v_{i} h_{j}\right)$
gradient: $\quad \frac{\partial}{\partial_{\theta_{i j}}} \ell(\mathcal{D} ; \theta) \propto \mathbb{E}_{\mathcal{D}, \theta}\left[v_{i} h_{j}\right]-\mathbb{E}_{p_{9}}\left[v_{i} h_{j}\right]$

$$
\left.=\left(\frac{1}{M} \sum_{v^{\prime} \in \mathcal{D}} \mathbb{E}_{p_{\theta}}\left[h_{j} \mid v_{i}^{\prime}\right]\right)-\mathbb{E}_{p_{\theta}}\left[v_{i} h_{j}\right]\right)
$$

Example: Restricted Boltzmann Machine

recall the ${ }_{\text {binary }}$ RBM: $\quad p(h, v)=\frac{1}{Z(\theta)} \exp \left(\sum_{i, j} \theta_{i, j} v_{i} h_{j}\right)$
data: $\mathcal{D}=\left\{v^{(m)}\right\}_{m}$

$$
\text { for } v_{i}, h_{j} \in\{0,1\}
$$

sufficient statistics: $\quad \phi\left(v_{i}, h_{j}\right)=v_{i}, h_{j}$
we want to optimize: $\ell(\mathcal{D} ; \theta)=\sum_{v \in \mathcal{D}} \log \sum_{h} \frac{1}{Z(\theta)} \exp \left(\sum_{i, j} \theta_{i, j} v_{i} h_{j}\right)$
gradient: $\quad \frac{\partial}{\partial_{\theta_{i j}}} \ell(\mathcal{D} ; \theta) \propto \mathbb{E}_{\mathcal{D}, \theta}\left[v_{i} h_{j}\right]-\mathbb{E}_{p_{\theta}}\left[v_{i} h_{j}\right]$

$$
\left.=\left(\frac{1}{M} \sum_{v^{\prime} \in \mathcal{D}} \mathbb{E}_{p_{9}}\left[h_{j} \mid v_{i}^{\prime}\right]\right)-\mathbb{E}_{p_{\theta}}\left[v_{i} h_{j}\right]\right)
$$

summary

learning with partial observations:

- missing data
- optimize the likelihood when missing at random
- latent variables
- can produce expressive probabilistic models
problem is not convex
how to learn the model?
- directly estimate the gradient
- use EM

[^0]: each x_{o} may include values for a different subset of vars.

