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Learning objectivesLearning objectives

different types of missing data
learning with missing data and hidden vars:

directed models
undirected models

develop an intuition for expectation maximization
variational interpretation
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effect
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latent variable models

observations have common cause
widely used in machine learning
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Learning with MCARLearning with MCAR

  missing completely at random (MCAR)

throw to generate

throw to decide show/hide

P (X,O) = P (X)P (O)

p(x) = θ (1 − θ)x 1−x

p(o) = ψ (1 − θ)o 1−o

objective: learn a model for X,  from the data D = {x , … ,x }o
(1)

o
(M)

ℓ(D, θ) = log p(x ,x )∑x ∈Do
∑xh o h

since                             , we can ignore the obs. patterns

optimize:

each        may include values for a different subset of vars.xo

P (X,O) = P (X)P (O)
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since there is no "extra" information in the obs. pattern, we can ignore it

A more general criteriaA more general criteria
  missing at random (MAR) O ⊥ X ∣XX h o

if there is information about the obs. pattern       in 
then it is also in 

OX Xh

throw the thumb-tack twice
if             hide
otherwise show

X = [X ,X ]1 2

X = 12 X1

X1

Xo

missing at random

missing completely at random

ℓ(D, θ) = log p(x ,x )∑x ∈Do
∑xh

o hoptimize:
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Likelihood functionLikelihood function

fully observed data:
directed: likelihood decomposes
undirected: does not decompose, but it is concave

partially observed:
does not decompose
not convex anymore

for partial observations

ℓ(D, θ) = log p(x ,x )∑x ∈Do
∑xh

o h

marginal

likelihood for a single assignment
to the latent vars.
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ℓ(D, θ) = log p(x, y, z)∑x,y,z∈D



Likelihood function: Likelihood function: exampleexample
for a directed model

marginal

x

y z= log p(x) + log p(y∣x) + log p(z∣x)∑x ∑x,y ∑x,z

fully observed case decomposes:

x is always missing (e.g., in a latent variable model)

ℓ(D, θ) = log p(x, y, z)∑x,y,z∈D

ℓ(D, θ) = log p(x)p(y∣x)p(z∣x)∑y,z∈D ∑x

cannot decompose it!
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Parameter learning Parameter learning with missing datawith missing data

option 1: obtain the gradient of marginal likelihood

option 2: expectation maximization (EM)

variational interpretation (in terms of free energy)
variational EM
Bayesian approach: variational Bayes

Directed models:

undirected models:

obtain the gradient of marginal likelihood

EM is not a good option here

all of these options
need inference for each step of 
learning
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log marginal likelihood:

ℓ(D) = log p(a)p(b)p(c∣a, b)p(d∣c)∑(a,c,d)∈D ∑b

ℓ(D) = p(d , c ∣a, c, d)∂p(d ∣c )′ ′
∂

p(d ∣c )′ ′
1 ∑(a,c,d)∈D

′ ′

simply take the derivative:

hidden

ℓ(D; θ) =∂θ
∂ ∑(c ,d )∈D′ ′ ∂p(d ∣c )′ ′

∂ℓ(D)
∂θ

∂p(d ∣c )′ ′

if the cond. prob. is parameterized, use the chain rule:

need inference for this
what happens to this expression if every variable is observed?
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θC∣A,BE.g., update using p(A,B,C∣D; θ )C∣A,B θ =C∣A,B
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p(A,B∣D;θ )C∣A,B

p(A,B,C∣D;θ )C∣A,B



Example: Gaussian mixture model

model parameters

p(y∣x; {μ , Σ }) = exp(− (y − μ ) Σ (y − μ ))k k  √ ∣2πΣ ∣x

   1
2
1

x
T

x
−1

x

x

y
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Example: Gaussian mixture model

E-step: calculate                 for each

model parameters

y ∈ D

p(y∣x; {μ , Σ }) = exp(− (y − μ ) Σ (y − μ ))k k  √ ∣2πΣ ∣x

   1
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1

x
T

x
−1

x

x

y

p(x;π) = π∏k k
I(x=k)

p(x∣y)

p(x∣y) ∝ p(x;π)p(y∣x;μ, Σ) = π N (y;μ , Σ )k k k

now we have "probabilistically completed" instances
update the parameters (easy in a Bayes-net)
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Directed models: Directed models: expectation maximizationexpectation maximization

E-step:
for each  
use the current parameters      to get the marginals

M-step:
use the marginals (similar to completely observed data) to learn

a, c, d ∈ D

θ

θ

guaranteed to improve the likelihood at each step

first initial steps quickly improve the likelihood, then slows down

converges to a local optimum:

multiple restarts are useful

for undirected models: M-step is the expensive part

perform E-step within each iteration of M-step: equivalent to gradient descent



expectation maximization: expectation maximization: exampleexample
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50% of variables are observed (in each instance)

fast initial improvement

alarm network



expectation maximization: expectation maximization: exampleexample

1000 training instances
50% of variables are observed (in each instance)

fast initial improvement

change in different parameter values

train log-likelihood

test log-likelihood



expectation maximization: expectation maximization: exampleexample

local optima in EM:

number of local maxima effect of multiple restarts

alarm network

a single hidden variable
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Variational interpretationVariational interpretation of EM of EM

p(h∣D; θ) =
p(D;θ)
p(h,D;θ)posterior a role similar to the partition function Z(θ)

negative of variational free energy
D (q(h); p(h∣D, θ)) = −H(q) − E [log p(h,D; θ)] + log p(D; θ)KL q

we want to maximize this!

ℓ(D; θ) = H(q) + E [log p(h,D; θ)] + D (q(h); p(h∣D, θ))q KL

evidence lower bound (ELBO) is a lower-bound on the likelihood

EM: perform block coordinate ascent

optimize q to match the posterior (i.e., obtain the posterior)

optimize     to increase ELBOθ



Variational interpretationVariational interpretation of EM of EM

ℓ(D; θ) = H(q) + E [log p(h,D; θ)] + D (q(h); p(h∣D, θ))q KL

evidence lower bound (ELBO) is a lower-bound on the likelihood

this interpretation also leads to:

variational EM:

use a family q and approximate variational inference to obtain q

  variational Bayes:

add a prior           and get a posterior over both latent vars (h) and parametersp(θ) θ
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Undirected models Undirected models with latent variableswith latent variables

linear exponential family p(x; θ) = exp(⟨θ,ϕ(x)⟩)
Z(θ)

1

gradient in the fully observed setting ∇ ℓ(θ,D) = ∣D∣(E [ϕ(x)] − E [ϕ(x)])θ D pθ

expectation wrt the data expectation wrt the model

partial observation:

∇ ℓ(θ,D) = ∣D∣(E [ϕ(x)] − E [ϕ(x)])θ D,θ pθ

x = (x ,x )o h
not observed

p(x ; θ) = exp(⟨θ,ϕ(x)⟩)o ∑xh Z(θ)
1marginal likelihood:

gradient in the partially obs. case

re
ca

ll

wrt both data and model: we need to do inference to calculate expected sufficient statistics (similar to EM)
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Example:Example:  Restricted Boltzmann MachineRestricted Boltzmann Machine

recall the binary RBM: p(h, v) = exp( θ v h )Z(θ)
1 ∑i,j i,j i j

v ,h ∈ {0, 1}i jfor

sufficient statistics: ϕ(v ,h ) = v ,hi j i j

data: D = {v }(m)
m

ℓ(D; θ) = log exp( θ v h )∑v∈D ∑h Z(θ)
1 ∑i,j i,j i jwe want to optimize:

ℓ(D; θ) ∝ E [v h ] − E [v h ]∂θi,j

∂
D,θ i j pθ i jgradient:

= ( E [h ∣v ]) − E [v h ])M
1 ∑v ∈D′ pθ j i

′
pθ i j

sampling-based inference: sample h | v use Gibbs sampling:
sample both h,v using current parameters



summarysummary

learning with partial observations:

missing data
optimize the likelihood when missing at random

latent variables
can produce expressive probabilistic models   

  problem is not convex
how to learn the model?

directly estimate the gradient

use EM
both cases require inference within each step


