Graphical Models

parameter learning in undirected models

Siamak Ravanbakhsh Winter 2018

Learning objectives

e the form of likelihood for undirected models
= why is it difficult to optimize?
e conditional likelihood in undirected models
e different approximations for parameter learning

Likelihood in MRFs

@
probability dist. I(A=1,B=1)
p(A4,B,C;0) = zexp(1l(A=1,B=1)+6I(B=1,C =1))

I(B=1,C

Likelihood in MRFs

@
probability dist. I(A=1,B=1)
p(A,B,C;0) = %exp(é’l]l(A =1,B=1)+6I(B=1,C =1)) CB)
observations |p|= 100 (B=1C

= 1)
o Ep(A=1,B=1)]=4,Ep[(B=1,C=1)]=.4 @

Likelihood in MRFs

@
probability dist. I(A=1,B=1)
p(A,B,C;0) = %exp(é’l]l(A =1,B=1)+6I(B=1,C =1)) CB)
observations |p|= 100 (B=1C

= 1)
o Epll(A=1,B=1)]=4,Ep[(B=1,C=1)]=.4 @

log-likelihood: 1ogp(D;6) = 3, .cpil(a = 1,b = 1) + 61(b = 1,c = 1) — 1001og Z(6)

Likelihood in MRFs

@
probability dist. I(A=1,B=1)
p(A,B,C;0) = %exp(el]l(A =1,B=1)+6I(B=1,C =1)) CB)
observations |p|= 100 (B=1C

= 1)
o Epl(A=1,B=1)]=4,Ep[(B=1,C=1)]=.4 @

log-likelihood: 1ogp(D;6) = 3, .cpil(a = 1,b = 1) + 61(b = 1,c = 1) — 1001og Z(6)

.
o

A

because of the partition function

the likelihood does not decompose

Likelihood in l[inear exponential family gogiinear modets)

probability distribution p(z;6) = 5 exp((6, ¢(z)))

sufficient statistics

Likelihood in l[inear exponential family gogiinear modets)

probability distribution p(z;6) = 5 exp((6, ¢(z)))

sufficient statistics

log-likelihood of D 4D,0) =1logp(D;0) = 3.,cp (6, $(2)) — |D|log Z(6)

Likelihood in l[inear exponential family gogiinear modets)

probability distribution p(z;6) = 5 exp((6, ¢(z)))

sufficient statistics

log-likelihood of D 4D,0) =1logp(D;0) = 3.,cp (6, $(x)) — |D|log Z(6)
¢(D,9) = |D| ({6, Ep[¢(z)]) — log Z(9))

expected sufficient statistics MWD

Likelihood in l[inear exponential family gogiinear modets)

probability distribution (z;8) = 5 exp((6, ¢(z)))

sufficient statistics

log-likelihood of D

example

image: Michael Jordan's draft

x(,l
o L=z

{(D,0) =logp(D;0) = >_,cp(0, é(z)) — |D|log Z(6)

(D, 0) = [D| ({0, Ep[p(x)]) — log Z(0))

expected sufficient statistics MWD

expected sufficient statistics

Ep[I(X;: =0, X, = 0)] = P(X; = 0, X5 = 0)
Ep[I(X: =1,X, = 0)] = P(X; =1, X5 = 0)
Ep[I(X; =0,X, =1)] = P(X; =0, X = 1)

Ep[I(X:=1,X;=1)] = P(X1 =1, X2 = 1)

012,00
012,10
01,2,0,1

01211

I(X, = 0,X, = 0)
I(X, =1,X, =0)
I(X; = 0,X, =1)

I(X;=1,X,=1)

Likelihood in l[inear exponential family gogiinear modets)

probability distribution »(z;6) = 7 exp((6,8(z)))

sufficient statistics

log-likelihood of D 4D,6) =logp(D;0) = 3,cp(0, $(x)) — [D|log Z(6)
(D, 0) = |D| ({6, Ep[@(@)]) — log Z(9))

expected sufficient statistics MUD

log Z(/) has interesting properties

2 10g 7(6) = BENONIN _ 1 (2) exp((6, 6(2)) = Eyldi(z)] SO Volog Z(6) = Ealg(a)

Likelihood in l[inear exponential family gogiinear modets)

probability distribution p(z;60) = 5 exp((6,@(z)))

sufficient statistics
log-likelihood of D 4D,6) =logp(D;0) = 3_,.cp(0, $(x)) — [D|log Z(0)
{(D,0) = |D| ({0, Epl@(@)]) — log Z(0))

expected sufficient statistics MWD

log Z(/) has interesting properties

2 10g 7(6) = ENONN _ 1 (2) exp((6, 6(2)) = Byldi(z)] SO Volog Z(6) = Ealg(a)

sivan; log Z(6) = Elgi(2);(2)] — Elei(2)]E[¢;(x)] = Cov(éi, ¢5)

so the Hessian matrix is positive definite = logZ(6) is convex

Likelihood in linear exponential family goginear modets)

probability distribution p(z;8) = 5 exp((6, ¢(2)))

log-likelihood of D ¢(D,6) = |D| ({6, Ep[s(x)]) - log 2(8))

linear in @ convex

concave

Likelihood in linear exponential family goginear modets)

probability distribution (z;8) = 5 exp((6, ¢(z)))

log-likelihood of D ¢(D,6) = |D| ({6, Ep[e(x)]) - log 2(8))

linear in @ convex

concave

should be easy to maximize (?)

® estimating Z(0) is a difficult inference problem
® how about just using the gradient info?

® involves inference as well Vjlog Z(6) = Ey[¢(z)] X X

O any combination of inference-gradient based optimization for learning undirected models

Moment matChing for linear exponential family

probability distribution »(z;6) = 7 exp((6, ¢(2)))

log-likelihood of D ¢,6) = |D| ((8, Ep[s(2)]) — log Z(6))

linearin @ convex

concave /

\

set its derivative to zero vy(6, D) = |D|(Ep[é(z)] — E,[é(z)]) = 0
= By [¢()] = Ep[¢()]

find the parameter 6

that results in the same expected sufficient statistics as the data

Moment matChing for linear exponential family

probability distribution »(z;6) = 7 exp((6, ¢(2)))

log-likelihood of D ¢p,6) = |D| ((8, Ep[s(2)]) — log Z(6))

linearin @ convex

concave /

set its derivative to zero v,(6, D) = |D|(Ep[¢(z)] — By, [6()]) -
= Ep,[¢(2)] = Ep[¢()]

find the parameter 6

that results in the same expected sufficient statistics as the data

Learning needs inferenceinaninnerioop

maximizing the likelihood: argmaxylogp(D|6)

® gradient o Ep[p(z)] — Ep[¢(z)]

® optimality condition Ep[¢(z)] = Ep, [¢(x)]

easy to calculate inference in the graphical model

example: in discrete pairwise MRF (i, ;) = p(zi, z;0) Vi, j € €

e e

empirical marginals ~ marginals in our current model

Learning needs inferenceinaninnerioop

maximizing the likelihood: argmaxylogp(D|6)

® gradient o Ep[¢(z)] — Ep[¢p(z)]

® optimality condition Ep[¢(z)] = Ep, [¢(x)]

easy to calculate inference in the graphical model

example: in discrete pairwise MRF (i, ©;) = p(zi, z;0) Vi, j € €

e e

empirical marginals ~ marginals in our current model

what if exact inference is infeasible?

® |earning with approx. inference often = exact optimization of approx. objective

B use sampling, variational inference ...

Conditional training

FEEIR generative vs. discriminative training

OROROROND
W ()-(1)-(1)~(1)
Hidden Markov Model (HMM) trained generatively

e easy to train the Bayes-net
e the likelihood decomposes

)) (v (W) ()
OaOROz00
Conditional random fields (CRF)

e trained discriminatively
e maximizing conditional log-likelihood

by 1x(D,0) = >, yyep log p(ylz)

e how to maximize this?

Conditional training

objective: argmaxy ly x (D, 0) = argmaxg), ,)cp log p(y|z)
again consider the gradient @ @ @ @ @
V9£Y|X(1)7 0) — Z(w’ y')ED ¢(x/7 y/) - Ep(.\:c;@) [QS(QI/, y)] o e e @ e

e conditional expectation of sufficient statistics
e it's conditioned on the observed x'

to obtain the gradient:

® for each instance (z,y) € D

B runinference conditioned on x

Conditional training

objective: argmaxy ly x (D, 0) = argmaxg >, ,)cp log p(y|z)
again consider the gradient @ @ @ @ @
V9£Y|X(1)7 0) — Z(w’ y')ED ¢(x/7 y/) - Ep(.\:c;@) [QS(QI/, y)] o e e @ e

e conditional expectation of sufficient statistics
e it's conditioned on the observed x'

to obtain the gradient:

® for each instance (z,y) € D

@ & & @ ®

B runinference conditioned on x

® compared to generative training in undirected models

(P v) —7.)
pro: conditioning could simplify inference @ 85— @
con: have to run inference for each datapoint inference on the reduced MRF

is easy in this case

Local priors & regularization

max-likelihood can lead to over-fitting
Bayesian approach:

® in Bayes-nets: decomposed prior p(9) —) decomposed posterior p(9 | D)

® in Markov nets: posterior does not decompose (because of the likelihood)

Local priors & regularization

max-likelihood can lead to over-fitting
Bayesian approach:

® in Bayes-nets: decomposed prior p(9) —) decomposed posterior p(9 | D)

® in Markov nets: posterior does not decompose (because of the likelihood)

alternative [eE full-Bayesian approach

MAP inference: find the maximum of the posterior arg maxg log p(D|6) + log p(6)

) e serves as a regularization
® does not model uncertainty « does not have to be conjugate

® sensitive to parametrization

Gaussian & Laplacian priors

MAP inference: find the maximum of the posterior arg maxg log p(D|6) + log p(6)

0.5

0 ® the product of univariate Laplacian (L1 reg.)

® the product of univariate Gaussian (L2 reg.) ---------------1

10

Gaussian & Laplacian priors

MAP inference: find the maximum of the posterior arg maxy log p(D|6) + log p(6)

0.5
0 ® the product of univariate Laplacian (L1 reg.)
04
® the product of univariate Gaussian (L2 reg.) ---------------1
0.3
p(0 |) o [T, exp(— o) = " Gaussian prior |l

0.1r1

logp(f | o) = —% ZZ 01.2 +c L2 regularization penalty term

Gaussian & Laplacian priors

MAP inference: find the maximum of the posterior arg maxg log p(D|6) + log p(6)

0 ® the product of univariate Laplacian (L1 reg.) Zi
® the product of univariate Gaussian (L2 reg.) --------------
0.3
p(6 o) o [T, exp(— o) = [Goussianprior [l
logp(0 | o) = —% 602+ c L2 regularization penalty term i
-10
p(0 | B) =11, 2 exp(—%) = sparsity-inducing

logp(0 | B) = —é > 16;] L1 regularization penalty term

Gaussian & Laplacian priors

MAP inference: find the maximum of the posterior arg maxg log p(D|6) + log p(6)

0 ® the product of univariate Laplacian (L1 reg.) Zz
® the product of univariate Gaussian (L2 reg.) --------------
0.3
p(6 o) o [T, exp(— o) = [Goussianprior [l
logp(0 | o) = —% 602+ c L2 regularization penalty term i
-10
p(0 | B) =11, 2 exp(—%) = sparsity-inducing

logp(0 | B) = —}3 >, 16:] L1 regularization penalty term

® Dboth of these bias the posterior towards smaller parameters
® why is this a good idea?

Pseudo-moment matching

we want to set the parameters 6 such that

if/when loopy BP converges:

pD(AaB) = ﬁ(A,B;Q),pD(B,D) = ﬁ(B,D,Q) .

empirical marginals marginals using BP

Pseudo-moment matching

we want to set the parameters 6 such that

if/when loopy BP converges:

po(4, B) = p(4, B;0),pp(B, D) = p(B, D;0)...

empirical marginals marginals using BP

idea: use the reparametrization in BP

«%e p(A,B)...p(C,A—————> product of clique marginals
‘ p(4,B,C, D, E, F) o p(A)...p(F) ——> cancel the double-counts

Pseudo-moment matching

we want to set the parameters 6 such that

if/when loopy BP converges:

po(4, B) = p(4, B;0),pp(B, D) = p(B, D;0)...

empirical marginals marginals using BP

idea: use the reparametrization in BP
. p(4,B,C,D,E, F) x p(A,B)...p(C,A—————— product of clique marginals

p(A)...p(F) ————> cancel the double-counts
set the factors using empirical marginals
® cg, ¢(4,B) <« po(4,B)/pp(4)

® each term in the numerator & denominator of .@. should be used exactly once

® if we run BP on the resulting model we will have po(4,B) = 5(4, B;0),pp(5, D) = p(B, D:0)...

Pseudo-likelihood

log-likelihood: logp(D;0) =>_,.p > ;logp(zi|z1,...,zi-1;0) using the chain rule

Pseudo-likelihood

log-likelihood: logp(D;0) = >_,.p > ;logp(zi|z1,...,zi-1;0) using the chain rule

pseudo log-likelihood is an approximation

logp(D;0) ~ > ,cp > _;log p(zi|z—i;6)

Pseudo-likelihood

log-likelihood: logp(D;0) = > ,.p > ;logp(zi|z1,...,zi-1;0) using the chain rule
pseudo log-likelihood is an approximation

logp(D;0) ~ > cp > _;log p(zi|z—i;6)

p(m;@) - 15(3:;0) eliminated th lizati tant
Zzi p(a;;H) Zwl p(a:;H) e normalization constan

Pseudo-likelihood

log-likelihood: logp(D;0) = > ,.p > ;logp(zi|z1,...,zi-1;0) using the chain rule
pseudo log-likelihood is an approximation

logp(D;0) ~ > cp > _;log p(zi|z—i;6)

p(z:9) = 15(:13;0) eliminated the normalization constant
Z$i p(z;0) Zmz p(z;0)

this assumption simplifies the gradient:

® instead of calculating 3~ _ ¢(z) — |D|E,, [¢r(z)]

expensivel

® use Z:I?ED o () — Ez Ep(-\zzr)[‘ﬁk(x;a ;)] can be further simplified using Markov blanket for each node...

® upshot: only conditional expectations are used (tractable!)

Pseudo-likelihood

log-likelihood: logp(D;0) = >_,.p > ;logp(zi|z1,...,zi-1;0) using the chain rule
pseudo log-likelihood is an approximation

logp(D;0) ~ > ,cp > _;log p(zi|z—i;6)

p(z:9) = 15(:13;0) eliminated the normalization constant
Z$i p(z;0) sz p(z;0)

this assumption simplifies the gradient:

® instead of calculating >~ _ ¢(z) — |D|E,, [¢r(z)] expensive!
® use Z;pep d)k(w) - Ez Ep(-\zlf)[(ﬁk(x;a wﬂ‘)] can be further simplified using Markov blanket for each node...

® upshot: only conditional expectations are used (tractable!)

at the limit of large data, this is exact!

Pseudo-likelihood

log-likelihood: 1logp(D;0) = > ,cp 2 ;logp(zilay, . .., zi1;0)
pseudo log-likelihood is an approximation

log p(D;0) =) _pep 2 logp(@ilz—i; 0)
this assumption simplifies the gradient

at the limit of large data, this is exact!

a combination of

. pseudo likelihood

)) one of the most efficient methods for structure learning
e | aplacian prior

Contrastive methods

log-likelihood: logp(D;0) = >_,.plog p(;6) — log Z(0)

L

keep the total sum of unnormalized
increase the unnormalize prob. of the data o .
probabilities small log >, p(z;0)

o i+ : 0 :
it's easy to evaluate: e.g, (6, (2)) e sum over exponentially many terms

Contrastive methods

log-likelihood: logp(D;0) = >_,.plog p(;6) — log Z(0)

L

keep the total sum of unnormalized
increase the unnormalize prob. of the data o .
probabilities small log), p(z;0)

o i+ : 0 .
it's easy to evaluate: e.g, (6, ¢(2)) e sum over exponentially many terms

contrastive methods: replace log Z(#) with a tractable alternative

® contrastive divergence minimization: only look at a small neighborhood of the data

® margin-based training: consider logmax,., p(z’;0)

u only for conditional training

Summary

e parameter learning in MRFs is difficult
= normalization constant ties the parameters together

o likelihood does not decompose
o Bayesian inference is also difficult

Summary

e parameter learning in MRFs is difficult
= normalization constant ties the parameters together

o likelihood does not decompose
o Bayesian inference is also difficult

e (conditional) log-likelihood is convex

m gradient steps: need inference on the current model
m global optima satisfies moment-matching condition
= combine inference methods + gradient descent for learning

Summary

e parameter learning in MRFs is difficult
= normalization constant ties the parameters together

o likelihood does not decompose
o Bayesian inference is also difficult

e (conditional) log-likelihood is convex

m gradient steps: need inference on the current model
m global optima satisfies moment-matching condition
= combine inference methods + gradient descent for learning

e alternative approaches:

m pseudo moment matching, pseudo likelihood, contrastive divergence,
margin-based training

