Graphical Models

parameter learning in undirected models

Siamak Ravanbakhsh

Winter 2018

Learning objectives

- the form of likelihood for undirected models
 - why is it difficult to optimize?
- conditional likelihood in undirected models
- different approximations for parameter learning

probability dist.

$$p(A,B,C; heta)=rac{1}{Z}\exp(heta_1\mathbb{I}(A=1,B=1)+ heta_2\mathbb{I}(B=1,C=1))$$

example

$$\mathbb{I}(A=1,B=1)$$

$$\mathbb{I}(A=1,B=1)$$
 B $\mathbb{I}(B=1,C=1)$ C

probability dist.

$$p(A,B,C; heta)=rac{1}{Z}\exp(heta_1\mathbb{I}(A=1,B=1)+ heta_2\mathbb{I}(B=1,C=1))$$

observations $|\mathcal{D}| = 100$

$$\bullet \quad \mathbb{E}_{\mathcal{D}}[\mathbb{I}(A=1,B=1)] = .4, \mathbb{E}_{\mathcal{D}}[\mathbb{I}(B=1,C=1)] = .4$$

example

$$\mathbb{I}(A=1,B=1)$$

$$\mathbb{I}(A=1,B=1)$$
 $egin{array}{c} B \ \hline \mathbb{I}(B=1,C=1) \ \hline \end{array}$

$$B=1,C=1)$$

probability dist.

$$p(A,B,C; heta)=rac{1}{Z}\exp(heta_1\mathbb{I}(A=1,B=1)+ heta_2\mathbb{I}(B=1,C=1))$$

observations $|\mathcal{D}| = 100$

•
$$\mathbb{E}_{\mathcal{D}}[\mathbb{I}(A=1,B=1)] = .4, \mathbb{E}_{\mathcal{D}}[\mathbb{I}(B=1,C=1)] = .4$$

log-likelihood:
$$\log p(\mathcal{D}; \theta) = \sum_{a,b,c \in \mathcal{D}} \theta_1 \mathbb{I}(a=1,b=1) + \theta_2 \mathbb{I}(b=1,c=1) - 100 \log Z(\theta)$$

$$=40\theta_1+40\theta_2-100\log Z(\theta)$$

$$\mathbb{I}(A=1,B=1)$$

$$\mathbb{I}(A=1,B=1)$$
 B
 $\mathbb{I}(B=1,C=1)$

probability dist.

$$p(A,B,C; heta)=rac{1}{Z}\exp(heta_1\mathbb{I}(A=1,B=1)+ heta_2\mathbb{I}(B=1,C=1))$$

observations $|\mathcal{D}| = 100$

•
$$\mathbb{E}_{\mathcal{D}}[\mathbb{I}(A=1,B=1)] = .4, \mathbb{E}_{\mathcal{D}}[\mathbb{I}(B=1,C=1)] = .4$$

 θ_2

$$\begin{array}{l} \textbf{log-likelihood:} \ \log p(\mathcal{D};\theta) = \sum_{a,b,c\in\mathcal{D}} \theta_1 \mathbb{I}(a=1,b=1) + \theta_2 \mathbb{I}(b=1,c=1) - 100 \log Z(\theta) \\ \\ = 40\theta_1 + 40\theta_2 - 100 \log Z(\theta) \end{array}$$

because of the partition function

the likelihood does not decompose

log-likelihood function

 θ_1

probability distribution
$$p(x;\theta)=rac{1}{Z(\theta)}\exp(\langle \theta, \phi(x) \rangle)$$

probability distribution
$$p(x;\theta) = \frac{1}{Z(\theta)} \exp(\langle \theta, \phi(x) \rangle)$$
 sufficient statistics log-likelihood of \mathcal{D} $\ell(\mathcal{D},\theta) = \log p(\mathcal{D};\theta) = \sum_{x \in \mathcal{D}} \langle \theta, \phi(x) \rangle - |\mathcal{D}| \log Z(\theta)$

probability distribution
$$p(x;\theta) = \frac{1}{Z(\theta)} \exp(\langle \theta, \phi(x) \rangle)$$
 sufficient statistics \log -likelihood of \mathcal{D} $\ell(\mathcal{D},\theta) = \log p(\mathcal{D};\theta) = \sum_{x \in \mathcal{D}} \langle \theta, \phi(x) \rangle - |\mathcal{D}| \log Z(\theta)$ $\ell(\mathcal{D},\theta) = |\mathcal{D}| \left(\langle \theta, \mathbb{E}_{\mathcal{D}}[\phi(x)] \rangle - \log Z(\theta)\right)$ expected sufficient statistics $\mu_{\mathcal{D}}$

probability distribution $p(x; \theta) = \frac{1}{Z(\theta)} \exp(\langle \theta, \phi(x) \rangle)$

sufficient statistics

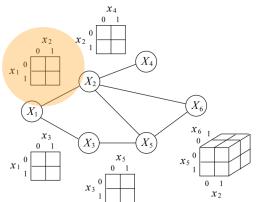
log-likelihood of \mathcal{D}

$$\ell(\mathcal{D}, heta) = \log p(\mathcal{D}; heta) = \sum_{x \in \mathcal{D}} \langle heta, \phi(x)
angle - |\mathcal{D}| \log Z(heta)$$

$$\ell(\mathcal{D}, heta) = |\mathcal{D}| \left(\langle heta, \mathbb{E}_{\mathcal{D}}[\phi(x)]
angle - \log Z(heta)
ight)$$

expected sufficient statistics $\,\mu_{\mathcal{D}}$

example



expected sufficient statistics

$$\mathbb{E}_{\mathcal{D}}[\mathbb{I}(X_1=0,X_2=0)] = P(X_1=0,X_2=0)$$

$$\mathbb{E}_{\mathcal{D}}[\mathbb{I}(X_1=1,X_2=0)] = P(X_1=1,X_2=0)$$

$$\mathbb{E}_{\mathcal{D}}[\mathbb{I}(X_1=0,X_2=1)] = P(X_1=0,X_2=1)$$

$$\mathbb{E}_{\mathcal{D}}[\mathbb{I}(X_1=1,X_2=1)] = P(X_1=1,X_2=1)$$

params.

$$\theta_{1,2,0,0}$$
 $\mathbb{I}(X_1=0,X_2=0)$

sufficient statistics

$$\theta_{1,2,1,0}$$
 $\mathbb{I}(X_1=1,X_2=0)$

$$heta_{1,2,0,1}$$
 $\mathbb{I}(X_1=0,X_2=1)$

$$\theta_{1,2,1,1}$$
 $\mathbb{I}(X_1=1,X_2=1)$

image: Michael Jordan's draft

probability distribution
$$p(x;\theta) = \frac{1}{Z(\theta)} \exp(\langle \theta, \phi(x) \rangle)$$
 sufficient statistics \log -likelihood of \mathcal{D} $\ell(\mathcal{D},\theta) = \log p(\mathcal{D};\theta) = \sum_{x \in \mathcal{D}} \langle \theta, \phi(x) \rangle - |\mathcal{D}| \log Z(\theta)$ $\ell(\mathcal{D},\theta) = |\mathcal{D}| \left(\langle \theta, \mathbb{E}_{\mathcal{D}}[\phi(x)] \rangle - \log Z(\theta)\right)$ expected sufficient statistics $\mu_{\mathcal{D}}$

 $\log Z(\theta)$ has interesting properties

$$rac{\partial}{\partial heta_i} \log Z(heta) = rac{rac{\partial}{\partial heta_i} \sum_x \exp(\langle heta, \phi(x)
angle)}{Z(heta)} = rac{1}{Z(heta)} \sum_x \phi_i(x) \exp(\langle heta, \phi(x)
angle) = \mathbb{E}_p[\phi_i(x)] \quad ext{ SO } \quad
abla_ heta \log Z(heta) = \mathbb{E}_ heta[\phi(x)]$$

probability distribution
$$p(x;\theta) = \frac{1}{Z(\theta)} \exp(\langle \theta, \phi(x) \rangle)$$
 sufficient statistics
$$\begin{aligned} & \log - \text{likelihood of } \mathcal{D} & \ell(\mathcal{D},\theta) = \log p(\mathcal{D};\theta) = \sum_{x \in \mathcal{D}} \langle \theta, \phi(x) \rangle - |\mathcal{D}| \log Z(\theta) \\ & \ell(\mathcal{D},\theta) = |\mathcal{D}| \left(\langle \theta, \mathbb{E}_{\mathcal{D}}[\phi(x)] \rangle - \log Z(\theta) \right) \\ & \text{expected sufficient statistics} & \mu_{\mathcal{D}} \end{aligned}$$

 $\log Z(\theta)$ has interesting properties

$$rac{\partial}{\partial heta_i} \log Z(heta) = rac{rac{\partial}{\partial heta_i} \sum_x \exp(\langle heta, \phi(x)
angle)}{Z(heta)} = rac{1}{Z(heta)} \sum_x \phi_i(x) \exp(\langle heta, \phi(x)
angle) = \mathbb{E}_p[\phi_i(x)] \quad ext{SO} \quad
abla_ heta \log Z(heta) = \mathbb{E}_\theta[\phi(x)] = rac{\partial^2}{\partial heta_i \partial heta_j} \log Z(heta) = \mathbb{E}[\phi_i(x)\phi_j(x)] - \mathbb{E}[\phi_i(x)]\mathbb{E}[\phi_j(x)] = extstyle Cov(\phi_i, \phi_j)$$

so the Hessian matrix is positive definite $\rightarrow \log Z(\theta)$ is convex

probability distribution $p(x; \theta) = \frac{1}{Z(\theta)} \exp(\langle \theta, \phi(x) \rangle)$

log-likelihood of
$$au$$

$$\frac{\mathsf{log-likelihood} \; \mathsf{of} \; \mathcal{D}}{\frac{\mathsf{linear} \; \mathsf{in} \; \theta}{\mathsf{concave}}} \frac{\ell(\mathcal{D}, \theta) = |\mathcal{D}| \; (\langle \theta, \mathbb{E}_{\mathcal{D}}[\phi(x)] \rangle}{\frac{\mathsf{log} \; Z(\theta))}{\mathsf{convex}}} - \frac{\log Z(\theta))}{\mathsf{convex}}$$

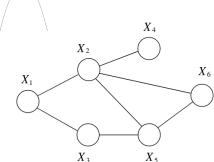
probability distribution
$$p(x; \theta) = rac{1}{Z(\theta)} \exp(\langle \theta, \phi(x)
angle)$$

log-likelihood of
$$\mathcal{D}$$

$$\ell(\mathcal{D}, heta) = |\mathcal{D}| \, rac{\langle heta, \mathbb{E}_{\mathcal{D}}[\phi(x)]
angle - \log Z(heta))}{ ext{linear in } oldsymbol{ heta}} rac{\log Z(heta))}{ ext{convex}}$$

should be easy to maximize (?) NO!

- estimating $Z(\theta)$ is a difficult inference problem
- how about just using the gradient info?
 - involves inference as well $\nabla_{\theta} \log Z(\theta) = \mathbb{E}_{\theta}[\phi(x)]$



O any combination of inference-gradient based optimization for learning undirected models

Moment matching for linear exponential family

 $\Rightarrow \mathbb{E}_{n_{\theta}}[\phi(x)] = \mathbb{E}_{\mathcal{D}}[\phi(x)]$

probability distribution
$$p(x;\theta) = \frac{1}{Z(\theta)} \exp(\langle \theta, \phi(x) \rangle)$$

log-likelihood of \mathcal{D} $\ell(\mathcal{D},\theta) = |\mathcal{D}| \left(\langle \theta, \mathbb{E}_{\mathcal{D}}[\phi(x)] \rangle - \log Z(\theta) \right)$
 $\frac{|\mathcal{D}|}{|\mathcal{D}|} \frac{|\mathcal{D}|}{|\mathcal{D}|} \frac{|\mathcal$

find the parameter heta that results in the same expected sufficient statistics as the data

Moment matching for linear exponential family

probability distribution
$$p(x;\theta) = \frac{1}{Z(\theta)} \exp(\langle \theta, \phi(x) \rangle)$$

log-likelihood of
$$\,{f {\cal I}}$$

$$\frac{\log\text{-likelihood of }\mathcal{D}}{\ell(\mathcal{D},\theta) = |\mathcal{D}| \left(\langle \theta, \mathbb{E}_{\mathcal{D}}[\phi(x)] \rangle - \frac{\log Z(\theta) \right)}{\text{convex}}}$$

set its derivative to zero $\nabla_{\theta}\ell(\theta,\mathcal{D}) = |\mathcal{D}|(\mathbb{E}_{\mathcal{D}}[\phi(x)] - \mathbb{E}_{p_{\theta}}[\phi(x)])$:

$$\Rightarrow \mathbb{E}_{p_{ heta}}[\phi(x)] = \mathbb{E}_{\mathcal{D}}[\phi(x)]$$

$$\mathbb{E}_{\mathcal{D}}[\phi(x)]$$
 $p(X_1=0,X_2=1; heta)=p_{\mathcal{D}}(X_1=0,X_2=1)$ X_3

 X_6

find the parameter heta

that results in the same expected sufficient statistics as the data

Learning needs inference in an inner loop

maximizing the likelihood: $\arg \max_{\theta} \log p(\mathcal{D}|\theta)$

- gradient $\propto \mathbb{E}_{\mathcal{D}}[\phi(x)] \frac{\mathbb{E}_{p_{\theta}}[\phi(x)]}{\mathbb{E}_{p_{\theta}}[\phi(x)]}$
- optimality condition $\mathbb{E}_{\mathcal{D}}[\phi(x)] = \mathbb{E}_{p_{\theta}}[\phi(x)]$ $\downarrow \qquad \qquad \downarrow$ easy to calculate inference in the graphical model

example: in discrete pairwise MRF
$$p_{\mathcal{D}}(x_i,x_j) = \frac{p(x_i,x_j;\theta)}{\downarrow} \quad \forall i,j \in \mathcal{E}$$
 empirical marginals marginals in our current model

Learning needs inference in an inner loop

maximizing the likelihood: $\arg \max_{\theta} \log p(\mathcal{D}|\theta)$

- gradient $\propto \mathbb{E}_{\mathcal{D}}[\phi(x)] \frac{\mathbb{E}_{p_{\theta}}[\phi(x)]}{\mathbb{E}_{p_{\theta}}[\phi(x)]}$
- optimality condition $\mathbb{E}_{\mathcal{D}}[\phi(x)] = \mathbb{E}_{p_{\theta}}[\phi(x)]$ \downarrow easy to calculate inference in the graphical model

example: in discrete pairwise MRF
$$p_{\mathcal{D}}(x_i,x_j) = \frac{p(x_i,x_j;\theta)}{\downarrow} \quad \forall i,j \in \mathcal{E}$$
 empirical marginals marginals in our current model

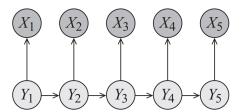
what if exact inference is infeasible?

- learning with approx. inference often \equiv exact optimization of approx. objective
 - use sampling, variational inference ...

Conditional training

Recall

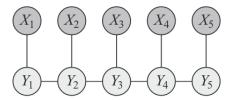
generative vs. discriminative training



Hidden Markov Model (HMM) trained generatively

$$\ell(\mathcal{D}, heta) = \sum_{(x,y) \in \mathcal{D}} \log p(x,y)$$

- easy to train the Bayes-net
- the likelihood decomposes



Conditional random fields (CRF)

- trained discriminatively
- maximizing conditional log-likelihood

$$\ell_{Y|X}(\mathcal{D}, heta) = \sum_{(x,y) \in \mathcal{D}} \log p(y|x)$$

how to maximize this?

Conditional training

objective: $rg \max_{ heta} \ell_{Y|X}(\mathcal{D}, heta) = rg \max_{ heta} \sum_{(x,y) \in \mathcal{D}} \log p(y|x)$

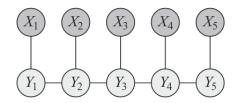
again consider the gradient

$$abla_{ heta}\ell_{Y|X}(\mathcal{D}, heta) = \sum_{(x',y')\in\mathcal{D}}\phi(x',y') - rac{\mathbb{E}_{p(.|x; heta)}[\phi(x',y)]}{}$$

- conditional expectation of sufficient statistics
- it's conditioned on the observed x'

to obtain the gradient:

- for each instance $(x,y) \in \mathcal{D}$
 - run inference conditioned on x



Conditional training

objective: $rg \max_{ heta} \ell_{Y|X}(\mathcal{D}, heta) = rg \max_{ heta} \sum_{(x,y) \in \mathcal{D}} \log p(y|x)$

again consider the gradient

$$abla_{ heta}\ell_{Y|X}(\mathcal{D}, heta) = \sum_{(x',y')\in\mathcal{D}}\phi(x',y') - rac{\mathbb{E}_{p(.|x; heta)}[\phi(x',y)]}{}$$

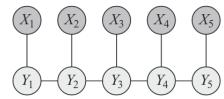
- conditional expectation of sufficient statistics
- it's conditioned on the observed x'

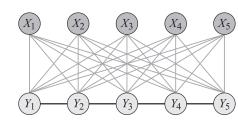
to obtain the gradient:

- for each instance $(x,y) \in \mathcal{D}$
 - run inference conditioned on x
- compared to generative training in undirected models

pro: conditioning could simplify inference

con: have to run inference for each datapoint





inference on the reduced MRF is easy in this case

Local priors & regularization

max-likelihood can lead to over-fitting Bayesian approach:

- in Bayes-nets: decomposed prior $p(\theta)$ \rightarrow decomposed posterior $p(\theta \mid \mathcal{D})$
- in Markov nets: posterior does not decompose (because of the likelihood)

Local priors & regularization

max-likelihood can lead to over-fitting Bayesian approach:

- in Bayes-nets: decomposed prior $p(\theta)$ \rightarrow decomposed posterior $p(\theta \mid \mathcal{D})$
- in Markov nets: posterior does not decompose (because of the likelihood)

alternative

to a full-Bayesian approach

MAP inference: find the maximum of the posterior $rg \max_{ heta} \log p(\mathcal{D}| heta) + \log p(heta)$

- does not model uncertainty
- sensitive to parametrization

- serves as a regularization
- does not have to be conjugate

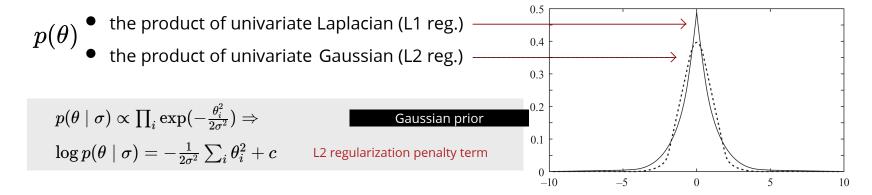
MAP inference: find the maximum of the posterior $\arg \max_{\theta} \log p(\mathcal{D}|\theta) + \log p(\theta)$

the product of univariate Laplacian (L1 reg.)

the product of univariate Gaussian (L2 reg.)

the product of univariate Gaussian (L2 reg.) 0.3 0.2 0.1 0.3 0.2 0.1 0

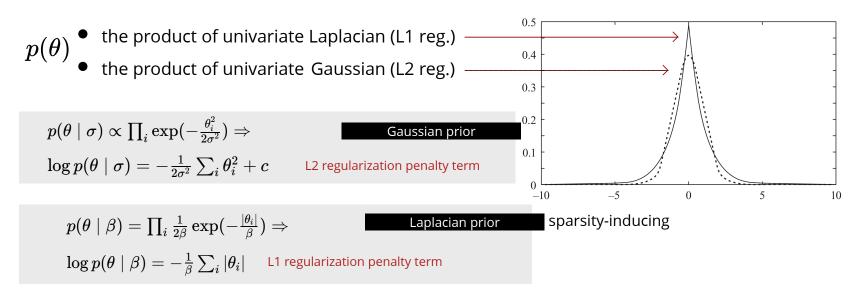
MAP inference: find the maximum of the posterior $\arg \max_{\theta} \log p(\mathcal{D}|\theta) + \log p(\theta)$



MAP inference: find the maximum of the posterior $\arg \max_{\theta} \log p(\mathcal{D}|\theta) + \log p(\theta)$

$$p(\theta) \stackrel{\bullet}{\bullet} \text{ the product of univariate Laplacian (L1 reg.)} \stackrel{0.5}{\bullet} \\ \text{the product of univariate Gaussian (L2 reg.)} \stackrel{0.4}{\bullet} \\ p(\theta \mid \sigma) \propto \prod_i \exp(-\frac{\theta_i^2}{2\sigma^2}) \Rightarrow \\ \log p(\theta \mid \sigma) = -\frac{1}{2\sigma^2} \sum_i \theta_i^2 + c \\ \log p(\theta \mid \beta) = \prod_i \frac{1}{2\beta} \exp(-\frac{|\theta_i|}{\beta}) \Rightarrow \\ \log p(\theta \mid \beta) = -\frac{1}{\beta} \sum_i |\theta_i| \\ \text{L1 regularization penalty term} \\ \frac{0.5}{0.4} \\ \frac{0.4}{0.3} \\ \frac{0.2}{0.1} \\ \frac{0.1}{0.1} \\ \frac{0.1}$$

MAP inference: find the maximum of the posterior $\arg \max_{\theta} \log p(\mathcal{D}|\theta) + \log p(\theta)$

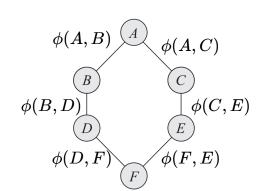


- both of these bias the posterior towards smaller parameters
 - why is this a good idea?

Pseudo-moment matching

we want to set the parameters θ such that if/when loopy BP converges:

$$p_{\mathcal{D}}(A,B) = \hat{p}(A,B;\theta), p_{\mathcal{D}}(B,D) = \hat{p}(B,D;\theta) \dots$$
 empirical marginals marginals using BP

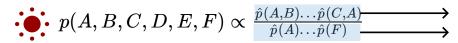


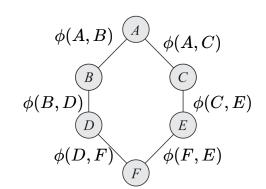
Pseudo-moment matching

we want to set the parameters θ such that if/when loopy BP converges:

$$p_{\mathcal{D}}(A,B) = \frac{\hat{p}(A,B;\theta)}{\hat{p}(A,B;\theta)}, p_{\mathcal{D}}(B,D) = \hat{p}(B,D;\theta) \dots$$
 empirical marginals using BP

idea: use the reparametrization in BP





product of clique marginals cancel the double-counts

Pseudo-moment matching

we want to set the parameters θ such that if/when loopy BP converges:

$$p_{\mathcal{D}}(A,B) = \frac{\hat{p}(A,B;\theta)}{p(A,B;\theta)}, p_{\mathcal{D}}(B,D) = \hat{p}(B,D;\theta) \dots$$
 empirical marginals using BP

idea: use the reparametrization in BP

$$p(A,B,C,D,E,F) \propto \frac{\hat{p}(A,B)\dots\hat{p}(C,A)}{\hat{p}(A)\dots\hat{p}(F)}$$

 $\phi(A,B)$ $\phi(A,C)$ $\phi(B,D)$ $\phi(C,E)$ $\phi(D,F)$ $\phi(F,E)$

product of clique marginals cancel the double-counts

set the factors using empirical marginals

- e.g., $\phi(A,B) \leftarrow p_{\mathcal{D}}(A,B)/p_{\mathcal{D}}(A)$
- each term in the numerator & denominator of 🔅 should be used exactly once
- if we run BP on the resulting model we will have $p_D(A,B) = \hat{p}(A,B;\theta), p_D(B,D) = \hat{p}(B,D;\theta)...$

log-likelihood: $\log p(\mathcal{D}; \theta) = \sum_{x \in \mathcal{D}} \sum_i \log p(x_i|x_1, \dots, x_{i-1}; \theta)$ using the chain rule

log-likelihood: $\log p(\mathcal{D}; \theta) = \sum_{x \in \mathcal{D}} \sum_i \log p(x_i | x_1, \dots, x_{i-1}; \theta)$ using the chain rule

pseudo log-likelihood is an approximation

$$[x_1,\dots,x_{i-1},x_{i+1},\dots,x_n]$$

 $\log p(\mathcal{D}; heta) pprox \sum_{x \in \mathcal{D}} \sum_{i} \log p(x_i | \overline{x_{-i}}; heta)$

log-likelihood: $\log p(\mathcal{D}; \theta) = \sum_{x \in \mathcal{D}} \sum_i \log p(x_i | x_1, \dots, x_{i-1}; \theta)$ using the chain rule

pseudo log-likelihood is an approximation

$$\frac{[x_1, \dots, x_{i-1}, x_{i+1}, \dots, x_n]}{\log p(\mathcal{D}; \theta) \approx \sum_{x \in \mathcal{D}} \sum_i \log p(x_i | \frac{x_{-i}; \theta)}{\sum_{x_i} p(x; \theta)} = \frac{\tilde{p}(x; \theta)}{\sum_{x_i} \tilde{p}(x; \theta)} \quad \text{eliminated the normalization constant}}$$

log-likelihood: $\log p(\mathcal{D}; \theta) = \sum_{x \in \mathcal{D}} \sum_{i} \log p(x_i | x_1, \dots, x_{i-1}; \theta)$ using the chain rule pseudo log-likelihood is an approximation

$$\frac{[x_1, \dots, x_{i-1}, x_{i+1}, \dots, x_n]}{\log p(\mathcal{D}; \theta) \approx \sum_{x \in \mathcal{D}} \sum_i \log p(x_i | \frac{\mathbf{x}_{-i}; \theta)}{\sum_{x_i} p(x; \theta)} = \frac{\tilde{p}(x; \theta)}{\sum_{x_i} \tilde{p}(x; \theta)} \quad \text{eliminated the normalization constant}}$$

this assumption simplifies the gradient:

- instead of calculating $\sum_{x \in \mathcal{D}} \phi_k(x) |\mathcal{D}| \frac{\mathbb{E}_{p_{\theta}}[\phi_k(x)]}{\text{expensive!}}$
- use $\sum_{x \in \mathcal{D}} \phi_k(x) \sum_i \mathbb{E}_{p(\cdot|x_{-i})}[\phi_k(x_i', x_{-i})]$ can be further simplified using Markov blanket for each node...
- upshot: only conditional expectations are used (tractable!)

log-likelihood: $\log p(\mathcal{D}; \theta) = \sum_{x \in \mathcal{D}} \sum_i \log p(x_i | x_1, \dots, x_{i-1}; \theta)$ using the chain rule pseudo log-likelihood is an approximation

$$\frac{[x_1, \dots, x_{i-1}, x_{i+1}, \dots, x_n]}{\log p(\mathcal{D}; \theta) \approx \sum_{x \in \mathcal{D}} \sum_i \log p(x_i | \frac{x_{-i}; \theta)}{\sum_{x_i} p(x; \theta)} = \frac{\tilde{p}(x; \theta)}{\sum_{x_i} \tilde{p}(x; \theta)} \quad \text{eliminated the normalization constant}}$$

this assumption simplifies the gradient:

- instead of calculating $\sum_{x \in \mathcal{D}} \phi_k(x) |\mathcal{D}| \frac{\mathbb{E}_{p_{\theta}}[\phi_k(x)]}{\text{expensive!}}$
- use $\sum_{x \in \mathcal{D}} \phi_k(x) \sum_i \mathbb{E}_{p(\cdot|x_{-i})}[\phi_k(x_i', x_{-i})]$ can be further simplified using Markov blanket for each node...
- **upshot:** only conditional expectations are used (tractable!)

at the limit of large data, this is exact!

log-likelihood: $\log p(\mathcal{D}; \theta) = \sum_{x \in \mathcal{D}} \sum_{i} \log p(x_i | x_1, \dots, x_{i-1}; \theta)$ using the chain rule pseudo log-likelihood is an approximation

$$\log p(\mathcal{D}; heta) pprox \sum_{x \in \mathcal{D}} \sum_{i} \log p(x_i | x_{-i}; heta)$$

this assumption simplifies the gradient

at the limit of large data, this is exact!

a combination of

- pseudo likelihoodLaplacian prior

one of the most efficient methods for structure learning

Contrastive methods

log-likelihood:
$$\log p(\mathcal{D}; \theta) = \sum_{x \in \mathcal{D}} \frac{\log \tilde{p}(x; \theta)}{\bigcup} - \frac{\log Z(\theta)}{\bigcup}$$

increase the unnormalize prob. of the data

• it's easy to evaluate: e.g, $\langle \theta, \phi(x) \rangle$

keep the total sum of unnormalized probabilities small $\log \sum_x \tilde{p}(x; \theta)$

• sum over exponentially many terms

Contrastive methods

log-likelihood:
$$\log p(\mathcal{D}; \theta) = \sum_{x \in \mathcal{D}} \frac{\log \tilde{p}(x; \theta) - \log Z(\theta)}{\downarrow}$$

increase the unnormalize prob. of the data

• it's easy to evaluate: e.g, $\langle \theta, \phi(x) \rangle$

keep the total sum of unnormalized probabilities small $\log \sum_x ilde{p}(x; heta)$

• sum over exponentially many terms

contrastive methods: replace $\log Z(\theta)$ with a tractable alternative

- contrastive divergence minimization: only look at a small neighborhood of the data
- ullet margin-based training: consider $\log \max_{x'
 eq x} ilde{p}(x'; heta)$
 - only for conditional training

Summary

- parameter learning in MRFs is difficult
 - normalization constant ties the parameters together
 - likelihood does not decompose
 - Bayesian inference is also difficult

Summary

- parameter learning in MRFs is difficult
 - normalization constant ties the parameters together
 - likelihood does not decompose
 - Bayesian inference is also difficult
- (conditional) log-likelihood is convex
 - gradient steps: need inference on the current model
 - global optima satisfies moment-matching condition
 - combine inference methods + gradient descent for learning

Summary

- parameter learning in MRFs is difficult
 - normalization constant ties the parameters together
 - likelihood does not decompose
 - Bayesian inference is also difficult
- (conditional) log-likelihood is convex
 - gradient steps: need inference on the current model
 - global optima satisfies moment-matching condition
 - combine inference methods + gradient descent for learning
- alternative approaches:
 - pseudo moment matching, pseudo likelihood, contrastive divergence, margin-based training