
Graphical ModelsGraphical Models
 parameter learning in undirected models

Siamak Ravanbakhsh Winter 2018

Learning objectivesLearning objectives

the form of likelihood for undirected models
why is it difficult to optimize?

conditional likelihood in undirected models
different approximations for parameter learning

Likelihood in MRFsLikelihood in MRFs
example A

B

C

probability dist. I(A = 1,B = 1)

I(B = 1,C = 1)

p(A,B,C; θ) = exp(θ I(A = 1,B = 1) + θ I(B = 1,C = 1))
Z
1

1 2

Likelihood in MRFsLikelihood in MRFs
example A

B

C

probability dist. I(A = 1,B = 1)

I(B = 1,C = 1)

p(A,B,C; θ) = exp(θ I(A = 1,B = 1) + θ I(B = 1,C = 1))
Z
1

1 2

observations

∣D∣ = 100

E [I(A = 1,B = 1)] = .4,E [I(B = 1,C = 1)] = .4D D

Likelihood in MRFsLikelihood in MRFs
example A

B

C

probability dist. I(A = 1,B = 1)

I(B = 1,C = 1)

p(A,B,C; θ) = exp(θ I(A = 1,B = 1) + θ I(B = 1,C = 1))
Z
1

1 2

log-likelihood: log p(D; θ) = θ I(a = 1, b = 1) + θ I(b = 1, c = 1) − 100 logZ(θ)∑a,b,c∈D 1 2

observations

∣D∣ = 100

E [I(A = 1,B = 1)] = .4,E [I(B = 1,C = 1)] = .4D D

= 40θ + 40θ − 100 logZ(θ)1 2

Likelihood in MRFsLikelihood in MRFs
example A

B

C

probability dist. I(A = 1,B = 1)

I(B = 1,C = 1)

p(A,B,C; θ) = exp(θ I(A = 1,B = 1) + θ I(B = 1,C = 1))
Z
1

1 2

log-likelihood: log p(D; θ) = θ I(a = 1, b = 1) + θ I(b = 1, c = 1) − 100 logZ(θ)∑a,b,c∈D 1 2

observations

∣D∣ = 100

E [I(A = 1,B = 1)] = .4,E [I(B = 1,C = 1)] = .4D D

= 40θ + 40θ − 100 logZ(θ)1 2

θ1
θ2

because of the partition function

the likelihood does not decompose
log-likelihood function

Likelihood inLikelihood in linear exponential familylinear exponential family (log-linear models)(log-linear models)

probability distribution p(x; θ) = exp(⟨θ,ϕ(x)⟩)
Z(θ)
1

sufficient statistics

Likelihood inLikelihood in linear exponential familylinear exponential family (log-linear models)(log-linear models)

probability distribution

ℓ(D, θ) = log p(D; θ) = ⟨θ,ϕ(x)⟩ − ∣D∣ logZ(θ)∑x∈D

p(x; θ) = exp(⟨θ,ϕ(x)⟩)
Z(θ)
1

log-likelihood of
sufficient statistics

D

Likelihood inLikelihood in linear exponential familylinear exponential family (log-linear models)(log-linear models)

probability distribution

ℓ(D, θ) = log p(D; θ) = ⟨θ,ϕ(x)⟩ − ∣D∣ logZ(θ)∑x∈D

p(x; θ) = exp(⟨θ,ϕ(x)⟩)
Z(θ)
1

log-likelihood of
sufficient statistics

D

ℓ(D, θ) = ∣D∣ ⟨θ,E [ϕ(x)]⟩ − logZ(θ)(D)

expected sufficient statistics μD

Likelihood inLikelihood in linear exponential familylinear exponential family (log-linear models)(log-linear models)

probability distribution

ℓ(D, θ) = log p(D; θ) = ⟨θ,ϕ(x)⟩ − ∣D∣ logZ(θ)∑x∈D

p(x; θ) = exp(⟨θ,ϕ(x)⟩)
Z(θ)
1

log-likelihood of
sufficient statistics

D

ℓ(D, θ) = ∣D∣ ⟨θ,E [ϕ(x)]⟩ − logZ(θ)(D)

expected sufficient statistics μD

image: Michael Jordan's draft

I(X = 0,X = 0)1 2

I(X = 1,X = 0)1 2

I(X = 1,X = 1)1 2

I(X = 0,X = 1)1 2

θ1,2,0,0

θ1,2,1,0

θ1,2,0,1

θ1,2,1,1

E [I(X = 0,X = 0)] = P (X = 0,X = 0)D 1 2 1 2

sufficient statisticsparams.

example

expected sufficient statistics

E [I(X = 1,X = 0)] = P (X = 1,X = 0)D 1 2 1 2

E [I(X = 0,X = 1)] = P (X = 0,X = 1)D 1 2 1 2

E [I(X = 1,X = 1)] = P (X = 1,X = 1)D 1 2 1 2

Likelihood inLikelihood in linear exponential familylinear exponential family (log-linear models)(log-linear models)

probability distribution

ℓ(D, θ) = log p(D; θ) = ⟨θ,ϕ(x)⟩ − ∣D∣ logZ(θ)∑x∈D

p(x; θ) = exp(⟨θ,ϕ(x)⟩)
Z(θ)
1

log-likelihood of
sufficient statistics

D

ℓ(D, θ) = ∣D∣ ⟨θ,E [ϕ(x)]⟩ − logZ(θ)(D)

expected sufficient statistics μD

has interesting propertieslogZ(θ)

logZ(θ) = = ϕ (x) exp(⟨θ,ϕ(x)⟩) = E [ϕ (x)]∂θi
∂

Z(θ)

exp(⟨θ,ϕ(x)⟩)∂θi
∂ ∑x

Z(θ)
1 ∑x i p i ∇ logZ(θ) = E [ϕ(x)]θ θso

Likelihood inLikelihood in linear exponential familylinear exponential family (log-linear models)(log-linear models)

probability distribution

ℓ(D, θ) = log p(D; θ) = ⟨θ,ϕ(x)⟩ − ∣D∣ logZ(θ)∑x∈D

p(x; θ) = exp(⟨θ,ϕ(x)⟩)
Z(θ)
1

log-likelihood of
sufficient statistics

D

ℓ(D, θ) = ∣D∣ ⟨θ,E [ϕ(x)]⟩ − logZ(θ)(D)

expected sufficient statistics μD

has interesting propertieslogZ(θ)

logZ(θ) = = ϕ (x) exp(⟨θ,ϕ(x)⟩) = E [ϕ (x)]∂θi
∂

Z(θ)

exp(⟨θ,ϕ(x)⟩)∂θi
∂ ∑x

Z(θ)
1 ∑x i p i ∇ logZ(θ) = E [ϕ(x)]θ θso

logZ(θ) = E[ϕ (x)ϕ (x)] − E[ϕ (x)]E[ϕ (x)] = Cov(ϕ ,ϕ)∂θ ∂θi j

∂2
i j i j i j

so the Hessian matrix is positive definite is convexlogZ(θ)

Likelihood inLikelihood in linear exponential family linear exponential family (log-linear models)(log-linear models)

probability distribution p(x; θ) = exp(⟨θ,ϕ(x)⟩)
Z(θ)
1

log-likelihood of D ℓ(D, θ) = ∣D∣ ⟨θ,E [ϕ(x)]⟩ − logZ(θ)(D)

linear in θ convex

concave

Likelihood inLikelihood in linear exponential family linear exponential family (log-linear models)(log-linear models)

probability distribution p(x; θ) = exp(⟨θ,ϕ(x)⟩)
Z(θ)
1

log-likelihood of D ℓ(D, θ) = ∣D∣ ⟨θ,E [ϕ(x)]⟩ − logZ(θ)(D)

linear in θ convex

concave

should be easy to maximize (?)

estimating is a difficult inference problem
how about just using the gradient info?

involves inference as well

any combination of inference-gradient based optimization for learning undirected models

NO!

Z(θ)

∇ logZ(θ) = E [ϕ(x)]θ θ

Moment matching Moment matching forfor linear exponential familylinear exponential family

set its derivative to zero ∇ ℓ(θ,D) = ∣D∣(E [ϕ(x)] − E [ϕ(x)]) = 0θ D pθ

probability distribution p(x; θ) = exp(⟨θ,ϕ(x)⟩)
Z(θ)
1

log-likelihood of D ℓ(D, θ) = ∣D∣ ⟨θ,E [ϕ(x)]⟩ − logZ(θ)(D)

linear in θ convex

concave

⇒ E [ϕ(x)] = E [ϕ(x)]pθ D

find the parameter

that results in the same expected sufficient statistics as the data
θ

Moment matching Moment matching forfor linear exponential familylinear exponential family

set its derivative to zero ∇ ℓ(θ,D) = ∣D∣(E [ϕ(x)] − E [ϕ(x)]) = 0θ D pθ

probability distribution p(x; θ) = exp(⟨θ,ϕ(x)⟩)
Z(θ)
1

log-likelihood of D ℓ(D, θ) = ∣D∣ ⟨θ,E [ϕ(x)]⟩ − logZ(θ)(D)

linear in θ convex

concave

⇒ E [ϕ(x)] = E [ϕ(x)]pθ D

find the parameter

that results in the same expected sufficient statistics as the data
θ

p(X = 0,X = 1; θ) = p (X = 0,X = 1)1 2 D 1 2

Learning needs inferenceLearning needs inference in an inner loop in an inner loop

maximizing the likelihood:

gradient

optimality condition

argmax log p(D∣θ)θ

∝ E [ϕ(x)] − E [ϕ(x)]D pθ

E [ϕ(x)] = E [ϕ(x)]D pθ

easy to calculate inference in the graphical model

example: in discrete pairwise MRF p (x ,x) = p(x ,x ; θ) ∀i, j ∈ ED i j i j

empirical marginals marginals in our current model

Learning needs inferenceLearning needs inference in an inner loop in an inner loop

maximizing the likelihood:

gradient

optimality condition

argmax log p(D∣θ)θ

∝ E [ϕ(x)] − E [ϕ(x)]D pθ

E [ϕ(x)] = E [ϕ(x)]D pθ

easy to calculate inference in the graphical model

example: in discrete pairwise MRF p (x ,x) = p(x ,x ; θ) ∀i, j ∈ ED i j i j

empirical marginals marginals in our current model

what if exact inference is infeasible?

learning with approx. inference often exact optimization of approx. objective

use sampling, variational inference ...

≡

Conditional trainingConditional training

generative vs. discriminative training

ℓ (D, θ) = log p(y∣x)Y ∣X ∑(x,y)∈D

Hidden Markov Model (HMM) trained generatively

Recall

ℓ(D, θ) = log p(x, y)∑(x,y)∈D

easy to train the Bayes-net
the likelihood decomposes

Conditional random fields (CRF)

trained discriminatively
maximizing conditional log-likelihood

how to maximize this?

Conditional trainingConditional training

objective: argmax ℓ (D, θ) = argmax log p(y∣x)θ Y ∣X θ∑(x,y)∈D

again consider the gradient

∇ ℓ (D, θ) = ϕ(x , y) − E [ϕ(x , y)]θ Y ∣X ∑(x ,y)∈D′ ′
′ ′

p(.∣x;θ)
′

conditional expectation of sufficient statistics
it's conditioned on the observed x'

to obtain the gradient:

for each instance

run inference conditioned on x

(x, y) ∈ D

Conditional trainingConditional training

objective: argmax ℓ (D, θ) = argmax log p(y∣x)θ Y ∣X θ∑(x,y)∈D

again consider the gradient

∇ ℓ (D, θ) = ϕ(x , y) − E [ϕ(x , y)]θ Y ∣X ∑(x ,y)∈D′ ′
′ ′

p(.∣x;θ)
′

conditional expectation of sufficient statistics
it's conditioned on the observed x'

to obtain the gradient:

for each instance

run inference conditioned on x

compared to generative training in undirected models

(x, y) ∈ D

inference on the reduced MRF
is easy in this case

pro: conditioning could simplify inference
con: have to run inference for each datapoint

Local priors & regularizationLocal priors & regularization

max-likelihood can lead to over-fitting
Bayesian approach:

in Bayes-nets: decomposed prior decomposed posterior

in Markov nets: posterior does not decompose (because of the likelihood)

p(θ) p(θ ∣ D)

Local priors & regularizationLocal priors & regularization

max-likelihood can lead to over-fitting
Bayesian approach:

in Bayes-nets: decomposed prior decomposed posterior

in Markov nets: posterior does not decompose (because of the likelihood)

p(θ) p(θ ∣ D)

alternative

MAP inference: find the maximum of the posterior

does not model uncertainty

sensitive to parametrization

argmax log p(D∣θ) + log p(θ)θ

serves as a regularization
does not have to be conjugate

to a full-Bayesian approach

Gaussian & Laplacian priorsGaussian & Laplacian priors
MAP inference: find the maximum of the posterior argmax log p(D∣θ) + log p(θ)θ

p(θ) the product of univariate Laplacian (L1 reg.)

the product of univariate Gaussian (L2 reg.)

Gaussian & Laplacian priorsGaussian & Laplacian priors
MAP inference: find the maximum of the posterior argmax log p(D∣θ) + log p(θ)θ

p(θ) the product of univariate Laplacian (L1 reg.)

the product of univariate Gaussian (L2 reg.)

p(θ ∣ σ) ∝ exp(−) ⇒∏
i 2σ2

θi
2

log p(θ ∣ σ) = − θ + c2σ2
1 ∑i i

2 L2 regularization penalty term

Gaussian prior

Gaussian & Laplacian priorsGaussian & Laplacian priors
MAP inference: find the maximum of the posterior argmax log p(D∣θ) + log p(θ)θ

p(θ) the product of univariate Laplacian (L1 reg.)

the product of univariate Gaussian (L2 reg.)

p(θ ∣ σ) ∝ exp(−) ⇒∏
i 2σ2

θi
2

log p(θ ∣ σ) = − θ + c2σ2
1 ∑i i

2 L2 regularization penalty term

p(θ ∣ β) = exp(−) ⇒∏i 2β
1

β
∣θ ∣i

log p(θ ∣ β) = − ∣θ ∣
β
1 ∑i i L1 regularization penalty term

Gaussian prior

Laplacian prior sparsity-inducing

Gaussian & Laplacian priorsGaussian & Laplacian priors
MAP inference: find the maximum of the posterior argmax log p(D∣θ) + log p(θ)θ

p(θ) the product of univariate Laplacian (L1 reg.)

the product of univariate Gaussian (L2 reg.)

p(θ ∣ σ) ∝ exp(−) ⇒∏
i 2σ2

θi
2

log p(θ ∣ σ) = − θ + c2σ2
1 ∑i i

2 L2 regularization penalty term

p(θ ∣ β) = exp(−) ⇒∏i 2β
1

β
∣θ ∣i

log p(θ ∣ β) = − ∣θ ∣
β
1 ∑i i L1 regularization penalty term

Gaussian prior

Laplacian prior

both of these bias the posterior towards smaller parameters
 why is this a good idea?

sparsity-inducing

Pseudo-moment matchingPseudo-moment matching
we want to set the parameters such that

if/when loopy BP converges:

p (A,B) = (A,B; θ), p (B,D) = (B,D; θ)…D p̂ D p̂
empirical marginals marginals using BP

θ ϕ(A,B)

ϕ(B,D)

ϕ(D,F) ϕ(F ,E)

ϕ(C,E)

ϕ(A,C)

Pseudo-moment matchingPseudo-moment matching
we want to set the parameters such that

if/when loopy BP converges:

idea: use the reparametrization in BP
p(A,B,C,D,E,F) ∝ (A)… (F)p̂ p̂

(A,B)… (C,A)p̂ p̂

p (A,B) = (A,B; θ), p (B,D) = (B,D; θ)…D p̂ D p̂
empirical marginals marginals using BP

θ

product of clique marginals
cancel the double-counts

ϕ(A,B)

ϕ(B,D)

ϕ(D,F) ϕ(F ,E)

ϕ(C,E)

ϕ(A,C)

set the factors using empirical marginals

e.g.,

each term in the numerator & denominator of should be used exactly once

if we run BP on the resulting model we will have

Pseudo-moment matchingPseudo-moment matching
we want to set the parameters such that

if/when loopy BP converges:

idea: use the reparametrization in BP
p(A,B,C,D,E,F) ∝ (A)… (F)p̂ p̂

(A,B)… (C,A)p̂ p̂

p (A,B) = (A,B; θ), p (B,D) = (B,D; θ)…D p̂ D p̂
empirical marginals marginals using BP

θ

product of clique marginals
cancel the double-counts

ϕ(A,B)

ϕ(B,D)

ϕ(D,F) ϕ(F ,E)

ϕ(C,E)

ϕ(A,C)

ϕ(A,B) ← p (A,B)/p (A)D D

p (A,B) = (A,B; θ), p (B,D) = (B,D; θ)…D p̂ D p̂

Pseudo-likelihoodPseudo-likelihood

log-likelihood: log p(D; θ) = log p(x ∣x ,… ,x ; θ)∑x∈D∑i i 1 i−1 using the chain rule

Pseudo-likelihoodPseudo-likelihood

log-likelihood: log p(D; θ) = log p(x ∣x ,… ,x ; θ)∑x∈D∑i i 1 i−1 using the chain rule

pseudo log-likelihood is an approximation

log p(D; θ) ≈ log p(x ∣x ; θ)∑x∈D∑i i −i

[x ,… ,x ,x ,… ,x]1 i−1 i+1 n

Pseudo-likelihoodPseudo-likelihood

log-likelihood: log p(D; θ) = log p(x ∣x ,… ,x ; θ)∑x∈D∑i i 1 i−1 using the chain rule

pseudo log-likelihood is an approximation

log p(D; θ) ≈ log p(x ∣x ; θ)∑x∈D∑i i −i

[x ,… ,x ,x ,… ,x]1 i−1 i+1 n

=
p(x;θ)∑xi

p(x;θ)
(x;θ)∑xi

p~
(x;θ)p~

eliminated the normalization constant

Pseudo-likelihoodPseudo-likelihood

log-likelihood: log p(D; θ) = log p(x ∣x ,… ,x ; θ)∑x∈D∑i i 1 i−1 using the chain rule

pseudo log-likelihood is an approximation

log p(D; θ) ≈ log p(x ∣x ; θ)∑x∈D∑i i −i

[x ,… ,x ,x ,… ,x]1 i−1 i+1 n

this assumption simplifies the gradient:

instead of calculating

use

upshot: only conditional expectations are used (tractable!)

=
p(x;θ)∑xi

p(x;θ)
(x;θ)∑xi

p~
(x;θ)p~

eliminated the normalization constant

ϕ (x) − ∣D∣E [ϕ (x)]∑x∈D k pθ k

ϕ (x) − E [ϕ (x ,x)]∑x∈D k ∑i p(.∣x)−i k i
′

−i

expensive!

can be further simplified using Markov blanket for each node...

Pseudo-likelihoodPseudo-likelihood

log-likelihood: log p(D; θ) = log p(x ∣x ,… ,x ; θ)∑x∈D∑i i 1 i−1 using the chain rule

pseudo log-likelihood is an approximation

log p(D; θ) ≈ log p(x ∣x ; θ)∑x∈D∑i i −i

[x ,… ,x ,x ,… ,x]1 i−1 i+1 n

this assumption simplifies the gradient:

instead of calculating

use

upshot: only conditional expectations are used (tractable!)

=
p(x;θ)∑xi

p(x;θ)
(x;θ)∑xi

p~
(x;θ)p~

eliminated the normalization constant

ϕ (x) − ∣D∣E [ϕ (x)]∑x∈D k pθ k

ϕ (x) − E [ϕ (x ,x)]∑x∈D k ∑i p(.∣x)−i k i
′

−i

expensive!

can be further simplified using Markov blanket for each node...

at the limit of large data, this is exact!

Pseudo-likelihoodPseudo-likelihood

log-likelihood: log p(D; θ) = log p(x ∣x ,… ,x ; θ)∑x∈D∑i i 1 i−1 using the chain rule

pseudo log-likelihood is an approximation

log p(D; θ) ≈ log p(x ∣x ; θ)∑x∈D∑i i −i

this assumption simplifies the gradient

at the limit of large data, this is exact!

a combination of

pseudo likelihood
Laplacian prior

one of the most efficient methods for structure learning+

Contrastive methodsContrastive methods

log-likelihood: log p(D; θ) = log (x; θ) − logZ(θ)∑x∈D p~

increase the unnormalize prob. of the data

it's easy to evaluate: e.g,

keep the total sum of unnormalized

probabilities small

sum over exponentially many terms

log (x; θ)∑x p~

⟨θ,ϕ(x)⟩

Contrastive methodsContrastive methods

log-likelihood: log p(D; θ) = log (x; θ) − logZ(θ)∑x∈D p~

increase the unnormalize prob. of the data

it's easy to evaluate: e.g,

keep the total sum of unnormalized

probabilities small

sum over exponentially many terms

log (x; θ)∑x p~

⟨θ,ϕ(x)⟩

contrastive methods: replace with a tractable alternative

contrastive divergence minimization: only look at a small neighborhood of the data

margin-based training: consider

only for conditional training

logZ(θ)

logmax (x ; θ)x ≠x′ p~ ′

SummarySummary

parameter learning in MRFs is difficult
normalization constant ties the parameters together

likelihood does not decompose
Bayesian inference is also difficult

SummarySummary

parameter learning in MRFs is difficult
normalization constant ties the parameters together

likelihood does not decompose
Bayesian inference is also difficult

(conditional) log-likelihood is convex
gradient steps: need inference on the current model
global optima satisfies moment-matching condition
combine inference methods + gradient descent for learning

SummarySummary

parameter learning in MRFs is difficult
normalization constant ties the parameters together

likelihood does not decompose
Bayesian inference is also difficult

(conditional) log-likelihood is convex
gradient steps: need inference on the current model
global optima satisfies moment-matching condition
combine inference methods + gradient descent for learning

alternative approaches:
pseudo moment matching, pseudo likelihood, contrastive divergence,
margin-based training

