Graphical Models
 parameter learning in undirected models

Learning objectives

- the form of likelihood for undirected models
- why is it difficult to optimize?
- conditional likelihood in undirected models
- different approximations for parameter learning

Likelihood in MRFs

example
probability dist.
$p(A, B, C ; \theta)=\frac{1}{Z} \exp \left(\theta_{1} \mathbb{I}(A=1, B=1)+\theta_{2} \mathbb{I}(B=1, C=1)\right)$

$$
\mathbb{I}(B=1, C=1)
$$

Likelihood in MRFs

example
probability dist.
$p(A, B, C ; \theta)=\frac{1}{Z} \exp \left(\theta_{1} \mathbb{I}(A=1, B=1)+\theta_{2} \mathbb{I}(B=1, C=1)\right)$
observations $|\mathcal{D}|=100$

- $\mathbb{E}_{\mathcal{D}}[\mathbb{I}(A=1, B=1)]=.4, \mathbb{E}_{\mathcal{D}}[\mathbb{I}(B=1, C=1)]=.4$

$$
\mathbb{I}(A=1, B=1)
$$

Likelihood in MRFs

example

probability dist.
$p(A, B, C ; \theta)=\frac{1}{Z} \exp \left(\theta_{1} \mathbb{I}(A=1, B=1)+\theta_{2} \mathbb{I}(B=1, C=1)\right)$
observations $|\mathcal{D}|=100$

$$
\mathbb{I}(A=1, B=1)
$$

$$
\mathbb{I}(B=1, C=1)
$$

- $\mathbb{E}_{\mathcal{D}}[\mathbb{I}(A=1, B=1)]=.4, \mathbb{E}_{\mathcal{D}}[\mathbb{I}(B=1, C=1)]=.4$
log-likelihood: $\log p(\mathcal{D} ; \theta)=\sum_{a, b, c \in \mathcal{D}} \theta_{1} \mathbb{I}(a=1, b=1)+\theta_{2} \mathbb{I}(b=1, c=1)-100 \log Z(\theta)$

$$
=40 \theta_{1}+40 \theta_{2}-100 \log Z(\theta)
$$

Likelihood in MRFs

probability dist.
$p(A, B, C ; \theta)=\frac{1}{Z} \exp \left(\theta_{1} \mathbb{I}(A=1, B=1)+\theta_{2} \mathbb{I}(B=1, C=1)\right)$
observations $|\mathcal{D}|=100$

- $\mathbb{E}_{\mathcal{D}}[\mathbb{I}(A=1, B=1)]=.4, \mathbb{E}_{\mathcal{D}}[\mathbb{I}(B=1, C=1)]=.4$
log-likelihood: $\log p(\mathcal{D} ; \theta)=\sum_{a, b, c \in \mathcal{D}} \theta_{1} \mathbb{I}(a=1, b=1)+\theta_{2} \mathbb{I}(b=1, c=1)-100 \log Z(\theta)$

$$
=40 \theta_{1}+40 \theta_{2}-100 \log Z(\theta)
$$

because of the partition function
the likelihood does not decompose
log-likelihood function

Likelihood in linear exponential family (log-linear models)

probability distribution $\quad p(x ; \theta)=\frac{1}{Z(\theta)} \exp (\langle\theta, \phi(x)\rangle)$
sufficient statistics

Likelihood in linear exponential family (log-linear models)

probability distribution $\quad p(x ; \theta)=\frac{1}{Z(\theta)} \exp (\langle\theta, \phi(x)\rangle)$
sufficient statistics
log-likelihood of $\mathcal{D} \quad \ell(\mathcal{D}, \theta)=\log p(\mathcal{D} ; \theta)=\sum_{x \in \mathcal{D}}\langle\theta, \phi(x)\rangle-|\mathcal{D}| \log Z(\theta)$

Likelihood in linear exponential family (log-linear models)

probability distribution $\quad p(x ; \theta)=\frac{1}{Z(\theta)} \exp (\langle\theta, \phi(x)\rangle)$
sufficient statistics
log-likelihood of $\mathcal{D} \quad \ell(\mathcal{D}, \theta)=\log p(\mathcal{D} ; \theta)=\sum_{x \in \mathcal{D}}\langle\theta, \phi(x)\rangle-|\mathcal{D}| \log Z(\theta)$

$$
\ell(\mathcal{D}, \theta)=|\mathcal{D}|\left(\left\langle\theta, \mathbb{E}_{\mathcal{D}}[\phi(x)]\right\rangle-\log Z(\theta)\right)
$$

expected sufficient statistics $\mu \mathcal{D}$

Likelihood in linear exponential family (log-linear models)

$$
\text { probability distribution } \quad p(x ; \theta)=\frac{1}{Z(\theta)} \exp (\langle\theta, \underset{\text { sufficient statistics }}{\phi(x)\rangle)}
$$

$$
\begin{array}{cc}
\text { Iog-likelihood of } \mathcal{D} \quad \ell(\mathcal{D}, \theta)=\log p(\mathcal{D} ; \theta)=\sum_{x \in \mathcal{D}}\langle\theta, \phi(x)\rangle-|\mathcal{D}| \log Z(\theta) \\
\ell(\mathcal{D}, \theta)=|\mathcal{D}|(\langle\theta, \underset{\mathcal{D}}{ } \underset{\mathcal{D}}{ }[\phi(x)]\rangle-\log Z(\theta)) \\
\text { expected sufficient statistics } \mu_{\mathcal{D}}
\end{array}
$$

expected sufficient statistics $\mathbb{E}_{\mathcal{D}}\left[\mathbb{I}\left(X_{1}=0, X_{2}=0\right)\right]=P\left(X_{1}=0, X_{2}=0\right)$
$\mathbb{E}_{\mathcal{D}}\left[\mathbb{I}\left(X_{1}=1, X_{2}=0\right)\right]=P\left(X_{1}=1, X_{2}=0\right)$
$\mathbb{E}_{\mathcal{D}}\left[\mathbb{I}\left(X_{1}=0, X_{2}=1\right)\right]=P\left(X_{1}=0, X_{2}=1\right)$
$\mathbb{E}_{\mathcal{D}}\left[\mathbb{I}\left(X_{1}=1, X_{2}=1\right)\right]=P\left(X_{1}=1, X_{2}=1\right)$
params
$\theta_{1,2,0,0}$
$\theta_{1,2,1,0}$
$\theta_{1,2,0,1}$
$\theta_{1,2,1,1}$
sufficient statistics
$\mathbb{I}\left(X_{1}=0, X_{2}=0\right)$
$\mathbb{I}\left(X_{1}=1, X_{2}=0\right)$
$\mathbb{I}\left(X_{1}=0, X_{2}=1\right)$
$\mathbb{I}\left(X_{1}=1, X_{2}=1\right)$

Likelihood in linear exponential family (log-linear models)

probability distribution $\quad p(x ; \theta)=\frac{1}{Z(\theta)} \exp (\langle\theta, \phi(x)\rangle)$
sufficient statistics
log-likelihood of $\mathcal{D} \quad \ell(\mathcal{D}, \theta)=\log p(\mathcal{D} ; \theta)=\sum_{x \in \mathcal{D}}\langle\theta, \phi(x)\rangle-|\mathcal{D}| \log Z(\theta)$

$$
\ell(\mathcal{D}, \theta)=|\mathcal{D}|\left(\left\langle\theta, \mathbb{E}_{\mathcal{D}}[\phi(x)]\right\rangle-\log Z(\theta)\right)
$$

expected sufficient statistics $\mu \mathcal{D}$
$\log Z(\theta)$ has interesting properties

$$
\frac{\partial}{\partial \theta_{i}} \log Z(\theta)=\frac{\frac{\partial}{\partial \theta_{i}} \sum_{x} \exp (\langle\theta, \phi(x)\rangle)}{Z(\theta)}=\frac{1}{Z(\theta)} \sum_{x} \phi_{i}(x) \exp (\langle\theta, \phi(x)\rangle)=\mathbb{E}_{p}\left[\phi_{i}(x)\right] \quad \text { So } \quad \nabla_{\theta} \log Z(\theta)=\mathbb{E}_{\theta}[\phi(x)]
$$

Likelihood in linear exponential family (log-linear models)

probability distribution $\quad p(x ; \theta)=\frac{1}{Z(\theta)} \exp (\langle\theta, \phi(x)\rangle)$
sufficient statistics
log-likelihood of $\mathcal{D} \quad \ell(\mathcal{D}, \theta)=\log p(\mathcal{D} ; \theta)=\sum_{x \in \mathcal{D}}\langle\theta, \phi(x)\rangle-|\mathcal{D}| \log Z(\theta)$
$\ell(\mathcal{D}, \theta)=|\mathcal{D}|\left(\left\langle\theta, \mathbb{E}_{\mathcal{D}}[\phi(x)]\right\rangle-\log Z(\theta)\right)$
expected sufficient statistics $\mu_{\mathcal{D}}$
$\log Z(\theta)$ has interesting properties
$\frac{\partial}{\partial \theta_{i}} \log Z(\theta)=\frac{\frac{\partial}{\partial \theta_{i}} \sum_{x} \exp (\langle\theta, \phi(x)\rangle)}{Z(\theta)}=\frac{1}{Z(\theta)} \sum_{x} \phi_{i}(x) \exp (\langle\theta, \phi(x)\rangle)=\mathbb{E}_{p}\left[\phi_{i}(x)\right] \quad$ so $\quad \nabla_{\theta} \log Z(\theta)=\mathbb{E}_{\theta}[\phi(x)]$
$\frac{\partial^{2}}{\partial \theta_{i} \partial \theta_{j}} \log Z(\theta)=\mathbb{E}\left[\phi_{i}(x) \phi_{j}(x)\right]-\mathbb{E}\left[\phi_{i}(x)\right] \mathbb{E}\left[\phi_{j}(x)\right]=\operatorname{Cov}\left(\phi_{i}, \phi_{j}\right)$
so the Hessian matrix is positive definite $\rightarrow \log Z(\theta)$ is convex

Likelihood in linear exponential family (log-linear models)

probability distribution $\quad p(x ; \theta)=\frac{1}{Z(\theta)} \exp (\langle\theta, \phi(x)\rangle)$
log-likelihood of \mathcal{D}

$$
\ell(\mathcal{D}, \theta)=|\mathcal{D}| \frac{\frac{\left(\left\langle\theta, \mathbb{E}_{\mathcal{D}}[\phi(x)]\right\rangle\right.}{\text { linear in } \theta}-\frac{\log Z(\theta))}{\text { convex }}}{\text { concave }}
$$

Likelihood in linear exponential family (log-linear models)

probability distribution $\quad p(x ; \theta)=\frac{1}{Z(\theta)} \exp (\langle\theta, \phi(x)\rangle)$
log-likelihood of $\mathcal{D} \quad \ell(\mathcal{D}, \theta)=|\mathcal{D}|\left(\left\langle\theta, \mathbb{E}_{\mathcal{D}}[\phi(x)]\right\rangle-\log Z(\theta)\right)$

concave
should be easy to maximize (?) No:

- estimating $Z(\theta)$ is a difficult inference problem
- how about just using the gradient info?
- involves inference as well $\nabla_{\theta} \log Z(\theta)=\mathbb{E}_{\theta}[\phi(x)]$

[^0]
Moment matching for linear exponential family

probability distribution $\quad p(x ; \theta)=\frac{1}{Z(\theta)} \exp (\langle\theta, \phi(x)\rangle)$
log-likelihood of \mathcal{D}

set its derivative to zero $\nabla_{\theta} \ell(\theta, \mathcal{D})=|\mathcal{D}|\left(\mathbb{E}_{\mathcal{D}}[\phi(x)]-\mathbb{E}_{p_{\theta}}[\phi(x)]\right)=0$

$$
\Rightarrow \mathbb{E}_{p e}[\phi(x)]=\mathbb{E}_{\mathcal{D}}[\phi(x)]
$$

find the parameter θ
that results in the same expected sufficient statistics as the data

Moment matching for linear exponential family

probability distribution $\quad p(x ; \theta)=\frac{1}{Z(\theta)} \exp (\langle\theta, \phi(x)\rangle)$
log-likelihood of \mathcal{D}

set its derivative to zero $\nabla_{\theta} \ell(\theta, \mathcal{D})=|\mathcal{D}|\left(\mathbb{E}_{\mathcal{D}}[\phi(x)]-\mathbb{E}_{p_{\theta}}[\phi(x)]\right)$:

$$
\Rightarrow \mathbb{E}_{p_{0}}[\phi(x)]=\mathbb{E}_{\mathcal{D}}[\phi(x)]
$$

find the parameter θ

that results in the same expected sufficient statistics as the data

Learning needs inference ${ }_{\text {in an inner loop }}$

maximizing the likelihood: $\arg \max _{\theta} \log p(\mathcal{D} \mid \theta)$

- gradient $\propto \mathbb{E}_{\mathcal{D}}[\phi(x)]-\mathbb{E}_{p_{\theta}}[\phi(x)]$
- optimality condition $\quad \mathbb{E}_{\mathcal{D}}[\phi(x)]=\mathbb{E}_{p_{\theta}}[\phi(x)]$
easy to calculate $\quad \stackrel{\downarrow}{\text { inference in the graphical model }}$
example: in discrete pairwise MRF $\begin{gathered}p_{\mathcal{D}}\left(x_{i}, x_{j}\right)=p\left(x_{i}, x_{j} ; \theta\right) \quad \forall i, j \in \mathcal{E} . \\ \downarrow\end{gathered}$ empirical marginals marginals in our current model

Learning needs inference ${ }_{\text {in an inner loop }}$

maximizing the likelihood: $\arg \max _{\theta} \log p(\mathcal{D} \mid \theta)$

- gradient $\propto \mathbb{E}_{\mathcal{D}}[\phi(x)]-\mathbb{E}_{p_{\theta}}[\phi(x)]$
- optimality condition

example: in discrete pairwise MRF $\begin{gathered}p_{\mathcal{D}}\left(x_{i}, x_{j}\right) \\ \downarrow\end{gathered}=p\left(x_{i}, x_{j} ; \theta\right) \quad \forall i, j \in \mathcal{E}$ empirical marginals marginals in our current model
what if exact inference is infeasible?
- learning with approx. inference often \equiv exact optimization of approx. objective
- use sampling, variational inference ...

Conditional training

Recall generative vs. discriminative training

Hidden Markov Model (HMM) trained generatively
$\ell(\mathcal{D}, \theta)=\sum_{(x, y) \in \mathcal{D}} \log p(x, y)$

- easy to train the Bayes-net
- the likelihood decomposes

Conditional random fields (CRF)

- trained discriminatively
- maximizing conditional log-likelihood

$$
\ell_{Y \mid X}(\mathcal{D}, \theta)=\sum_{(x, y) \in \mathcal{D}} \log p(y \mid x)
$$

- how to maximize this?

Conditional training

objective: $\arg \max _{\theta} \ell_{Y \mid X}(\mathcal{D}, \theta)=\arg \max _{\theta} \sum_{(x, y) \in \mathcal{D}} \log p(y \mid x)$
again consider the gradient
$\nabla_{\theta} \ell_{Y \mid X}(\mathcal{D}, \theta)=\sum_{\left(x^{\prime}, y^{\prime}\right) \in \mathcal{D}} \phi\left(x^{\prime}, y^{\prime}\right)-\mathbb{E}_{p(\cdot \mid x ; \theta)}\left[\phi\left(x^{\prime}, y\right)\right]$

- conditional expectation of sufficient statistics
- it's conditioned on the observed x'
to obtain the gradient:
- for each instance $(x, y) \in \mathcal{D}$
- run inference conditioned on x

Conditional training

objective: $\arg \max _{\theta} \ell_{Y \mid X}(\mathcal{D}, \theta)=\arg \max _{\theta} \sum_{(x, y) \in \mathcal{D}} \log p(y \mid x)$
again consider the gradient
$\nabla_{\theta} \ell_{Y \mid X}(\mathcal{D}, \theta)=\sum_{\left(x^{\prime}, y^{\prime}\right) \in \mathcal{D}} \phi\left(x^{\prime}, y^{\prime}\right)-\mathbb{E}_{p(. \mid x ; \theta)}\left[\phi\left(x^{\prime}, y\right)\right]$

- conditional expectation of sufficient statistics
- it's conditioned on the observed x'
to obtain the gradient:
- for each instance $(x, y) \in \mathcal{D}$
- run inference conditioned on x
- compared to generative training in undirected models
pro: conditioning could simplify inference
con: have to run inference for each datapoint

inference on the reduced MRF is easy in this case

Local priors \& regularization

max-likelihood can lead to over-fitting
Bayesian approach:

- in Bayes-nets: decomposed prior $p(\theta) \rightarrow$ decomposed posterior $p(\theta \mid \mathcal{D})$
- in Markov nets: posterior does not decompose (because of the likelihood)

Local priors \& regularization

max-likelihood can lead to over-fitting

Bayesian approach:

- in Bayes-nets: decomposed prior $p(\theta) \rightarrow$ decomposed posterior $p(\theta \mid \mathcal{D})$
- in Markov nets: posterior does not decompose (because of the likelihood)

alternative

to a full-Bayesian approach
MAP inference: find the maximum of the posterior $\quad \arg \max _{\theta} \log p(\mathcal{D} \mid \theta)+\underline{\log p(\theta)}$

- does not model uncertainty
- serves as a regularization
- does not have to be conjugate
- sensitive to parametrization

Gaussian \& Laplacian priors

MAP inference: find the maximum of the posterior $\arg \max _{\theta} \log p(\mathcal{D} \mid \theta)+\log p(\theta)$
$p(\theta) \bullet$ the product of univariate Laplacian (L1 reg.) $\xrightarrow{\bullet} \xrightarrow{0.5}$

Gaussian \& Laplacian priors

MAP inference: find the maximum of the posterior $\arg \max _{\theta} \log p(\mathcal{D} \mid \theta)+\log p(\theta)$

Gaussian \& Laplacian priors

MAP inference: find the maximum of the posterior $\arg \max _{\theta} \log p(\mathcal{D} \mid \theta)+\log p(\theta)$

Gaussian \& Laplacian priors

MAP inference: find the maximum of the posterior $\arg \max _{\theta} \log p(\mathcal{D} \mid \theta)+\log p(\theta)$

- both of these bias the posterior towards smaller parameters
- why is this a good idea?

Pseudo-moment matching

we want to set the parameters θ such that if/when loopy BP converges:

$$
p_{\mathcal{D}}(A, B)=\underset{\text { marginals using BP }}{\hat{p}(A, B ; \theta), p_{\mathcal{D}}(B, D)=\hat{p}(B, D ; \theta) \ldots . . .(B) .}
$$

(B,

Pseudo-moment matching

we want to set the parameters θ such that if/when loopy BP converges:
idea: use the reparametrization in BP

$\therefore p(A, B, C, D, E, F) \propto \frac{\hat{p}(A, B) \ldots \hat{p}(C, A)}{\hat{p}(A) \ldots \hat{p}(F)} \longrightarrow$
product of clique marginals cancel the double-counts

Pseudo-moment matching

we want to set the parameters θ such that if/when loopy BP converges:

$$
\underset{\text { ral marginals }}{p_{\mathcal{D}}(A, B)}=\underset{\text { marginals using BP }}{\hat{p}(A, B ; \theta), p_{\mathcal{D}}}(B, D)=\hat{p}(B, D ; \theta) \ldots
$$

idea: use the reparametrization in BP

$\therefore p(A, B, C, D, E, F) \propto \frac{\hat{p}(A, B) \ldots \hat{p}(C, A)}{\hat{p}(A) \ldots \hat{p}(F)} \longrightarrow \quad \begin{aligned} & \text { product of clique marginals } \\ & \text { cancel the double-counts }\end{aligned}$
set the factors using empirical marginals

- e.g., $\phi(A, B) \leftarrow p_{\mathcal{D}}(A, B) / p_{\mathcal{D}}(A)$
- each term in the numerator \& denominator of $: \dot{:}$: should be used exactly once
- if we run BP on the resulting model we will have $p_{\mathcal{D}}(A, B)=\hat{p}(A, B ; \theta), p_{\mathcal{D}}(B, D)=\hat{p}(B, D ; \theta)$.

Pseudo-likelihood

log-likelihood: $\log p(\mathcal{D} ; \theta)=\sum_{x \in \mathcal{D}} \sum_{i} \log p\left(x_{i} \mid x_{1}, \ldots, x_{i-1} ; \theta\right) \quad$ using the chain rule

Pseudo-likelihood

log-likelihood: $\log p(\mathcal{D} ; \theta)=\sum_{x \in \mathcal{D}} \sum_{i} \log p\left(x_{i} \mid x_{1}, \ldots, x_{i-1} ; \theta\right) \quad$ using the chain rule pseudo log-likelihood is an approximation

$$
\log p(\mathcal{D} ; \theta) \approx \sum_{x \in \mathcal{D}} \sum_{i} \log p\left(x_{i} \mid x_{-i} ; \theta\right)
$$

Pseudo-likelihood

log-likelihood: $\log p(\mathcal{D} ; \theta)=\sum_{x \in \mathcal{D}} \sum_{i} \log p\left(x_{i} \mid x_{1}, \ldots, x_{i-1} ; \theta\right) \quad$ using the chain rule pseudo log-likelihood is an approximation

$$
\log p(\mathcal{D} ; \theta) \approx \sum_{x \in \mathcal{D}} \sum_{i} \log p \frac{\left(x_{i} \mid x_{-i} ; \theta\right)}{\frac{p(x ; \theta)}{\sum_{x_{i}} p(x ; \theta)}}=\frac{\tilde{p}(x ; \theta)}{\sum_{x_{i}} \tilde{p}(x ; \theta)} \quad \text { eliminated the normalization constant }
$$

Pseudo-likelihood

log-likelihood: $\log p(\mathcal{D} ; \theta)=\sum_{x \in \mathcal{D}} \sum_{i} \log p\left(x_{i} \mid x_{1}, \ldots, x_{i-1} ; \theta\right) \quad$ using the chain rule pseudo log-likelihood is an approximation

$$
\begin{aligned}
& \log p(\mathcal{D} ; \theta) \approx \sum_{x \in \mathcal{D}} \sum_{i} \log p\left(x_{i} \mid x_{-i} ; \theta\right) \\
& \frac{p(x ; \theta)}{\sum_{x_{i}} p(x ; \theta)}
\end{aligned}=\frac{\tilde{p}(x ; \theta)}{\sum_{x_{i}} \tilde{p}(x ; \theta)} \quad \text { eliminated the normalization constant }
$$

this assumption simplifies the gradient:

- instead of calculating $\quad \sum_{x \in \mathcal{D}} \phi_{k}(x)-|\mathcal{D}| \mathbb{E}_{p_{\theta}}\left[\phi_{k}(x)\right] \quad$ expensive!
- use $\sum_{x \in \mathcal{D}} \phi_{k}(x)-\sum_{i} \mathbb{E}_{p\left(. \mid x_{-i}\right)}\left[\phi_{k}\left(x_{i}^{\prime}, x_{-i}\right)\right]$ can be further simplified using Markov blanket for each node...
- upshot: only conditional expectations are used (tractable!)

Pseudo-likelihood

log-likelihood: $\log p(\mathcal{D} ; \theta)=\sum_{x \in \mathcal{D}} \sum_{i} \log p\left(x_{i} \mid x_{1}, \ldots, x_{i-1} ; \theta\right) \quad$ using the chain rule pseudo log-likelihood is an approximation

$$
\log p(\mathcal{D} ; \theta) \approx \sum_{x \in \mathcal{D}} \sum_{i} \log p \frac{p\left(x_{i} \mid x_{-i} ; \theta\right)}{\frac{p(x ; \theta)}{\sum_{x_{i}} p(x ; \theta)}}=\frac{\tilde{p}(x ; \theta)}{\sum_{x_{i}} \tilde{p}(x ; \theta)} \quad \text { eliminated the normalization constant }
$$

this assumption simplifies the gradient:

- instead of calculating $\quad \sum_{x \in \mathcal{D}} \phi_{k}(x)-|\mathcal{D}| \mathbb{E}_{p_{\theta}}\left[\phi_{k}(x)\right] \quad$ expensive!
- use $\sum_{x \in \mathcal{D}} \phi_{k}(x)-\sum_{i} \mathbb{E}_{p\left(. \mid x_{-i}\right)}\left[\phi_{k}\left(x_{i}^{\prime}, x_{-i}\right)\right]$ can be further simplified using Markov blanket for each node...
- upshot: only conditional expectations are used (tractable!)
at the limit of large data, this is exact!

Pseudo-likelihood

log-likelihood: $\log p(\mathcal{D} ; \theta)=\sum_{x \in \mathcal{D}} \sum_{i} \log p\left(x_{i} \mid x_{1}, \ldots, x_{i-1} ; \theta\right)$ using the chain rule pseudo log-likelihood is an approximation

$$
\log p(\mathcal{D} ; \theta) \approx \sum_{x \in \mathcal{D}} \sum_{i} \log p\left(x_{i} \mid x_{-i} ; \theta\right)
$$

this assumption simplifies the gradient
at the limit of large data, this is exact!
a combination of

+ pseudo likelihood
- Laplacian prior

Contrastive methods

log-likelihood: $\quad \log p(\mathcal{D} ; \theta)=\sum_{x \in \mathcal{D}} \log \tilde{p}(x ; \theta)-\log Z(\theta)$
increase the unnormalize prob. of the data

- it's easy to evaluate: e.g, $\langle\theta, \phi(x)\rangle$
keep the total sum of unnormalized probabilities small $\log \sum_{x} \tilde{p}(x ; \theta)$
- sum over exponentially many terms

Contrastive methods

log-likelihood: $\quad \log p(\mathcal{D} ; \theta)=\sum_{x \in \mathcal{D}} \log \tilde{p}(x ; \theta)-\log Z(\theta)$

keep the total sum of unnormalized probabilities small $\log \sum_{x} \tilde{p}(x ; \theta)$

- it's easy to evaluate: e.g, $\langle\theta, \phi(x)\rangle$
- sum over exponentially many terms
contrastive methods: replace $\log Z(\theta)$ with a tractable alternative
- contrastive divergence minimization: only look at a small neighborhood of the data
- margin-based training: consider $\log \max _{x^{\prime} \neq x} \tilde{p}\left(x^{\prime} ; \theta\right)$
- only for conditional training

Summary

- parameter learning in MRFs is difficult
- normalization constant ties the parameters together
- likelihood does not decompose
- Bayesian inference is also difficult

Summary

- parameter learning in MRFs is difficult
- normalization constant ties the parameters together
- likelihood does not decompose
- Bayesian inference is also difficult
- (conditional) log-likelihood is convex
- gradient steps: need inference on the current model
- global optima satisfies moment-matching condition
- combine inference methods + gradient descent for learning

Summary

- parameter learning in MRFs is difficult
- normalization constant ties the parameters together
- likelihood does not decompose
- Bayesian inference is also difficult
- (conditional) log-likelihood is convex
- gradient steps: need inference on the current model
- global optima satisfies moment-matching condition
- combine inference methods + gradient descent for learning
- alternative approaches:
- pseudo moment matching, pseudo likelihood, contrastive divergence, margin-based training

[^0]: O any combination of inference-gradient based optimization for learning undirected models

