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Learning objectivesLearning objectives

the form of likelihood for undirected models
why is it difficult to optimize?

conditional likelihood in undirected models
different approximations for parameter learning
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I(B = 1,C = 1)

p(A,B,C; θ) = exp(θ I(A = 1,B = 1) + θ I(B = 1,C = 1))
Z
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example A

B

C

probability dist. I(A = 1,B = 1)

I(B = 1,C = 1)

p(A,B,C; θ) = exp(θ I(A = 1,B = 1) + θ I(B = 1,C = 1))
Z
1

1 2

log-likelihood: log p(D; θ) = θ I(a = 1, b = 1) + θ I(b = 1, c = 1) − 100 logZ(θ)∑a,b,c∈D 1 2

observations

 

∣D∣ = 100

E [I(A = 1,B = 1)] = .4,E [I(B = 1,C = 1)] = .4D D

= 40θ + 40θ − 100 logZ(θ)1 2

θ1
θ2

because of the partition function

the likelihood does not decompose
log-likelihood function
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probability distribution

ℓ(D, θ) = log p(D; θ) = ⟨θ,ϕ(x)⟩ − ∣D∣ logZ(θ)∑x∈D

p(x; θ) = exp(⟨θ,ϕ(x)⟩)
Z(θ)
1

log-likelihood of 
sufficient statistics

D

ℓ(D, θ) = ∣D∣ ⟨θ,E [ϕ(x)]⟩ − logZ(θ)( D )

expected sufficient statistics μD

image: Michael Jordan's draft

I(X = 0,X = 0)1 2

I(X = 1,X = 0)1 2

I(X = 1,X = 1)1 2

I(X = 0,X = 1)1 2

θ1,2,0,0

θ1,2,1,0

θ1,2,0,1

θ1,2,1,1

E [I(X = 0,X = 0)] = P (X = 0,X = 0)D 1 2 1 2

sufficient statisticsparams.

example

expected sufficient statistics

E [I(X = 1,X = 0)] = P (X = 1,X = 0)D 1 2 1 2

E [I(X = 0,X = 1)] = P (X = 0,X = 1)D 1 2 1 2

E [I(X = 1,X = 1)] = P (X = 1,X = 1)D 1 2 1 2
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1 ∑x i p i ∇ logZ(θ) = E [ϕ(x)]θ θso
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probability distribution

ℓ(D, θ) = log p(D; θ) = ⟨θ,ϕ(x)⟩ − ∣D∣ logZ(θ)∑x∈D

p(x; θ) = exp(⟨θ,ϕ(x)⟩)
Z(θ)
1

log-likelihood of
sufficient statistics

D

ℓ(D, θ) = ∣D∣ ⟨θ,E [ϕ(x)]⟩ − logZ(θ)( D )

expected sufficient statistics μD

has interesting propertieslogZ(θ)

logZ(θ) = = ϕ (x) exp(⟨θ,ϕ(x)⟩) = E [ϕ (x)]∂θi
∂

Z(θ)

exp(⟨θ,ϕ(x)⟩)∂θi
∂ ∑x

Z(θ)
1 ∑x i p i ∇ logZ(θ) = E [ϕ(x)]θ θso

logZ(θ) = E[ϕ (x)ϕ (x)] − E[ϕ (x)]E[ϕ (x)] = Cov(ϕ ,ϕ )∂θ ∂θi j

∂2
i j i j i j

so the Hessian matrix is positive definite is convexlogZ(θ)
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Likelihood inLikelihood in linear exponential family  linear exponential family (log-linear models)(log-linear models)

probability distribution p(x; θ) = exp(⟨θ,ϕ(x)⟩)
Z(θ)
1

log-likelihood of D ℓ(D, θ) = ∣D∣ ⟨θ,E [ϕ(x)]⟩ − logZ(θ)( D )

linear in θ convex

concave

should be easy to maximize (?)

estimating         is a difficult inference problem
how about just using the gradient info?

involves inference as well

any combination of inference-gradient based optimization for learning undirected models

NO!

Z(θ)

∇ logZ(θ) = E [ϕ(x)]θ θ



Moment matching Moment matching forfor  linear exponential familylinear exponential family

set its derivative to zero ∇ ℓ(θ,D) = ∣D∣(E [ϕ(x)] − E [ϕ(x)]) = 0θ D pθ

probability distribution p(x; θ) = exp(⟨θ,ϕ(x)⟩)
Z(θ)
1

log-likelihood of D ℓ(D, θ) = ∣D∣ ⟨θ,E [ϕ(x)]⟩ − logZ(θ)( D )

linear in θ convex

concave

⇒ E [ϕ(x)] = E [ϕ(x)]pθ D

find the parameter

that results in the same expected sufficient statistics as the data
θ



Moment matching Moment matching forfor  linear exponential familylinear exponential family

set its derivative to zero ∇ ℓ(θ,D) = ∣D∣(E [ϕ(x)] − E [ϕ(x)]) = 0θ D pθ

probability distribution p(x; θ) = exp(⟨θ,ϕ(x)⟩)
Z(θ)
1

log-likelihood of D ℓ(D, θ) = ∣D∣ ⟨θ,E [ϕ(x)]⟩ − logZ(θ)( D )

linear in θ convex

concave

⇒ E [ϕ(x)] = E [ϕ(x)]pθ D

find the parameter

that results in the same expected sufficient statistics as the data
θ

p(X = 0,X = 1; θ) = p (X = 0,X = 1)1 2 D 1 2



Learning needs inferenceLearning needs inference in an inner loop in an inner loop

maximizing the likelihood:

gradient

optimality condition

argmax log p(D∣θ)θ

∝ E [ϕ(x)] − E [ϕ(x)]D pθ

E [ϕ(x)] = E [ϕ(x)]D pθ

easy to calculate inference in the graphical model

example: in discrete pairwise MRF p (x ,x ) = p(x ,x ; θ) ∀i, j ∈ ED i j i j

empirical marginals marginals in our current model



Learning needs inferenceLearning needs inference in an inner loop in an inner loop

maximizing the likelihood:

gradient

optimality condition

argmax log p(D∣θ)θ

∝ E [ϕ(x)] − E [ϕ(x)]D pθ

E [ϕ(x)] = E [ϕ(x)]D pθ

easy to calculate inference in the graphical model

example: in discrete pairwise MRF p (x ,x ) = p(x ,x ; θ) ∀i, j ∈ ED i j i j

empirical marginals marginals in our current model

what if exact inference is infeasible?

learning with approx. inference often            exact optimization of approx. objective

use sampling, variational inference ...

≡



Conditional trainingConditional training

generative vs. discriminative training

ℓ (D, θ) = log p(y∣x)Y ∣X ∑(x,y)∈D

Hidden Markov Model (HMM) trained generatively

Recall

ℓ(D, θ) = log p(x, y)∑(x,y)∈D

easy to train the Bayes-net
the likelihood decomposes

Conditional random fields (CRF)

trained discriminatively
maximizing conditional log-likelihood

how to maximize this?



Conditional trainingConditional training

objective: argmax ℓ (D, θ) = argmax log p(y∣x)θ Y ∣X θ∑(x,y)∈D

again consider the gradient

∇ ℓ (D, θ) = ϕ(x , y ) − E [ϕ(x , y)]θ Y ∣X ∑(x ,y )∈D′ ′
′ ′

p(.∣x;θ)
′

conditional expectation of sufficient statistics
it's conditioned on the observed x'

to obtain the gradient:

for each instance

run inference conditioned on x

(x, y) ∈ D



Conditional trainingConditional training

objective: argmax ℓ (D, θ) = argmax log p(y∣x)θ Y ∣X θ∑(x,y)∈D

again consider the gradient

∇ ℓ (D, θ) = ϕ(x , y ) − E [ϕ(x , y)]θ Y ∣X ∑(x ,y )∈D′ ′
′ ′

p(.∣x;θ)
′

conditional expectation of sufficient statistics
it's conditioned on the observed x'

to obtain the gradient:

for each instance

run inference conditioned on x

compared to generative training in undirected models

(x, y) ∈ D

inference on the reduced MRF
is easy in this case

pro: conditioning could simplify inference
con: have to run inference for each datapoint



Local priors & regularizationLocal priors & regularization

max-likelihood can lead to over-fitting
Bayesian approach:

in Bayes-nets: decomposed prior                      decomposed posterior

in Markov nets: posterior does not decompose (because of the likelihood)

p(θ) p(θ ∣ D)



Local priors & regularizationLocal priors & regularization

max-likelihood can lead to over-fitting
Bayesian approach:

in Bayes-nets: decomposed prior                      decomposed posterior

in Markov nets: posterior does not decompose (because of the likelihood)

p(θ) p(θ ∣ D)

alternative

MAP inference: find the maximum of the posterior

does not model uncertainty

sensitive to parametrization

argmax log p(D∣θ) + log p(θ)θ

serves as a regularization
does not have to be conjugate

to a full-Bayesian approach



Gaussian & Laplacian priorsGaussian & Laplacian priors
MAP inference: find the maximum of the posterior argmax log p(D∣θ) + log p(θ)θ

p(θ) the product of univariate Laplacian (L1 reg.)

the product of univariate Gaussian (L2 reg.)
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Gaussian prior

Laplacian prior sparsity-inducing



Gaussian & Laplacian priorsGaussian & Laplacian priors
MAP inference: find the maximum of the posterior argmax log p(D∣θ) + log p(θ)θ

p(θ) the product of univariate Laplacian (L1 reg.)

the product of univariate Gaussian (L2 reg.)

p(θ ∣ σ) ∝ exp(− ) ⇒∏
i 2σ2

θi
2

log p(θ ∣ σ) = − θ + c2σ2
1 ∑i i

2 L2 regularization penalty term

p(θ ∣ β) = exp(− ) ⇒∏i 2β
1

β
∣θ ∣i

log p(θ ∣ β) = − ∣θ ∣
β
1 ∑i i L1 regularization penalty term

Gaussian prior

Laplacian prior

both of these bias the posterior towards smaller parameters
  why is this a good idea?

sparsity-inducing



Pseudo-moment matchingPseudo-moment matching
we want to set the parameters     such that

if/when loopy BP converges:

p (A,B) = (A,B; θ), p (B,D) = (B,D; θ)…D p̂ D p̂
empirical marginals marginals using BP

θ ϕ(A,B)
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Pseudo-moment matchingPseudo-moment matching
we want to set the parameters     such that

if/when loopy BP converges:

idea: use the reparametrization in BP
p(A,B,C,D,E,F ) ∝ (A)… (F )p̂ p̂

(A,B)… (C,A)p̂ p̂

p (A,B) = (A,B; θ), p (B,D) = (B,D; θ)…D p̂ D p̂
empirical marginals marginals using BP

θ

product of clique marginals
cancel the double-counts

ϕ(A,B)

ϕ(B,D)

ϕ(D,F ) ϕ(F ,E)

ϕ(C,E)

ϕ(A,C)



set the factors using empirical marginals

e.g.,

each term in the numerator & denominator of        should be used exactly once

if we run BP on the resulting model we will have

Pseudo-moment matchingPseudo-moment matching
we want to set the parameters     such that

if/when loopy BP converges:

idea: use the reparametrization in BP
p(A,B,C,D,E,F ) ∝ (A)… (F )p̂ p̂

(A,B)… (C,A)p̂ p̂

p (A,B) = (A,B; θ), p (B,D) = (B,D; θ)…D p̂ D p̂
empirical marginals marginals using BP

θ

product of clique marginals
cancel the double-counts

ϕ(A,B)

ϕ(B,D)

ϕ(D,F ) ϕ(F ,E)

ϕ(C,E)

ϕ(A,C)

ϕ(A,B) ← p (A,B)/p (A)D D

p (A,B) = (A,B; θ), p (B,D) = (B,D; θ)…D p̂ D p̂
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log-likelihood: log p(D; θ) = log p(x ∣x ,… ,x ; θ)∑x∈D∑i i 1 i−1 using the chain rule

pseudo log-likelihood is an approximation

log p(D; θ) ≈ log p(x ∣x ; θ)∑x∈D∑i i −i

[x ,… ,x ,x ,… ,x ]1 i−1 i+1 n

this assumption simplifies the gradient:

instead of calculating

use                                           

upshot: only conditional expectations are used (tractable!)

=
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(x;θ)p~

eliminated the normalization constant
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′
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expensive!

can be further simplified using Markov blanket for each node...
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pseudo log-likelihood is an approximation
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expensive!

can be further simplified using Markov blanket for each node...

at the limit of large data, this is exact!



Pseudo-likelihoodPseudo-likelihood

log-likelihood: log p(D; θ) = log p(x ∣x ,… ,x ; θ)∑x∈D∑i i 1 i−1 using the chain rule

pseudo log-likelihood is an approximation

log p(D; θ) ≈ log p(x ∣x ; θ)∑x∈D∑i i −i

this assumption simplifies the gradient

at the limit of large data, this is exact!

a combination of

pseudo likelihood
Laplacian prior

one of the most efficient methods for structure learning+



Contrastive methodsContrastive methods

log-likelihood: log p(D; θ) = log (x; θ) − logZ(θ)∑x∈D p~

increase the unnormalize prob. of the data

it's easy to evaluate: e.g,             

keep the total sum of unnormalized

probabilities small

sum over exponentially many terms

log (x; θ)∑x p~

⟨θ,ϕ(x)⟩



Contrastive methodsContrastive methods

log-likelihood: log p(D; θ) = log (x; θ) − logZ(θ)∑x∈D p~

increase the unnormalize prob. of the data

it's easy to evaluate: e.g,             

keep the total sum of unnormalized

probabilities small

sum over exponentially many terms

log (x; θ)∑x p~

⟨θ,ϕ(x)⟩

contrastive methods: replace                    with a tractable alternative

contrastive divergence minimization: only look at a small neighborhood of the data

margin-based training: consider

only for conditional training

logZ(θ)

logmax (x ; θ)x ≠x′ p~ ′
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likelihood does not decompose
Bayesian inference is also difficult
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SummarySummary

parameter learning in MRFs is difficult
normalization constant ties the parameters together

likelihood does not decompose
Bayesian inference is also difficult

(conditional) log-likelihood is convex
gradient steps: need inference on the current model
global optima satisfies moment-matching condition
combine inference methods + gradient descent for learning

alternative approaches:
pseudo moment matching, pseudo likelihood, contrastive divergence,
margin-based training


