Graphical Models

Review of probability theory

Siamak Ravanbakhsh

Winter 2018

Learning objectives

- Probability distribution and density functions
- Random variable
- Bayes' rule
- Conditional independence
- Expectation and Variance

Sample space Ω

 $\Omega = \{\omega\}$: the **set** of all possible **outcomes** (*a.k.a.* outcome space)

Example1: three tosses of a coin $\Omega = \{hhh, hht, hth, \dots, ttt\}$

$$\Omega = \{hhh, hht, hth, \dots, ttt\}$$

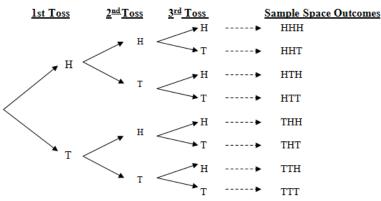


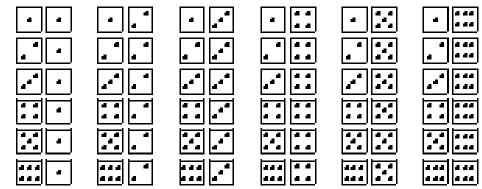
image: http://web.mnstate.edu/peil/MDEV102/U3/S25/Cartesian3.PNG

Sample space Ω

 $\Omega = \{\omega\}$: the **set** of all possible **outcomes** (*a.k.a.* outcome space)

Example 2: two dice

$$\Omega = \{(1,1),\ldots,(6,6)\}$$

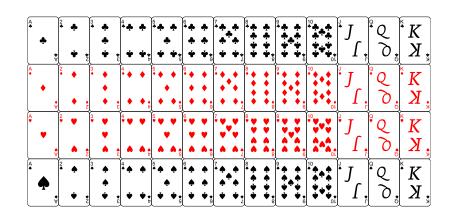


Sample space Ω

 $\Omega = \{\omega\}$: the **set** of all possible **outcomes** (*a.k.a.* outcome space)

Example 3: 2 cards from a deck (assuming order doesn't matter)

$$|\Omega| = {54 \choose 2} = {54! \over 2!52!} = 1431$$



Event space S

An event $F\subseteq \Omega$ is a set of outcomes event space $\mathcal{S}\subseteq 2^\Omega$ is a set of events

Event space S

An event $F\subseteq \Omega$ is a set of outcomes event space $\mathcal{S}\subset 2^\Omega$ is a set of events

Example:

Event: at least two heads $F = \{hht, thh, hth, hhh\}$

Event: pair of aces |F| = 6

Event space ${\cal S}$

Requirements for event space:

- ullet Complement of an event is also an event $A \in \mathcal{S}
 ightarrow \Omega A \in \mathcal{S}$
- ullet Intersection of events is also an event $A,B\in \mathcal{S}
 ightarrow A\cap B\in \mathcal{S}$

Example:

at least one head $\in \mathcal{S} \to \text{no heads} \in \mathcal{S}$

at least one head, at least one tail $\in \mathcal{S} \to \operatorname{at}$ least one head and one tail $\in \mathcal{S}$

Probability distribution

Assigns a real value to each event $P: \mathcal{S} \to \Re$

Probability axioms (Kolmogorov axioms)

- Probability is non-negative $P(A) \ge 0$
- The probability of disjoint events is additive

$$A\cap B=\emptyset o P(A\cup B)=P(A)+P(B)$$

 $\bullet P(\Omega) = 1$

Probability distribution

Probability axioms (Kolmogorov axioms)

- Probability is non-negative $P(A) \ge 0$
- disjoint events are additive: $A \cap B = \emptyset \rightarrow P(A \cup B) = P(A) + P(B)$
- \bullet $P(\Omega)=1$

Derivatives:

- \bullet $P(\emptyset) = 0$
- $P(A \cup B) = P(A) + P(B) P(A \cap B)$ $P(A \cap B) \leq \min\{P(A), P(B)\}$
- union bound: $P(A \cup B) < P(A) + P(B)$

- $\bullet P(\Omega \backslash A) = 1 P(A)$

Probability distribution; examples

$$\Omega = \{1, 2, 3, 4, 5, 6\}$$

$$S = {\emptyset, \Omega}$$
 (a minimal choice of event space)

$$P(\emptyset) = 0, P(\Omega) = 1$$

Probability distribution; examples

$$\Omega = \{1, 2, 3, 4, 5, 6\}$$

$$S = {\emptyset, \Omega}$$
 (a minimal choice of event space)

$$P(\emptyset) = 0, P(\Omega) = 1$$

$$\mathcal{S}=2^{\Omega}$$
 (a maximal choice of event space)

$$P(A)=rac{|A|}{6}$$
 that is $P(\{1,3\})=rac{2}{6}$ (any other *consistent* assignment is acceptable)

Conditional probability

Probability of an event A after observing the event B

$$P(A \mid B) = \frac{P(A \cap B)}{P(B)}$$

Conditional probability

Probability of an event A after observing the event B

$$P(A \mid B) = \frac{P(A \cap B)}{P(B)}$$

Conditional probability

Probability of an event A after observing the event B

$$P(A \mid B) = \frac{P(A \cap B)}{P(B)}$$
 $P(B) > 0$

Example: three coin tosses

$$P(\text{at least one head} \mid \text{at least one tail}) = \frac{P(\text{at least one head and one tail})}{P(\text{at least one tail})}$$

$$P(A \mid B) = rac{P(A \cap B)}{P(B)}$$

$$P(A \mid B) = rac{P(A \cap B)}{P(B)}$$

Chain rule: $P(A \cap B) = P(B)P(A \mid B)$

$$P(A \mid B) = rac{P(A \cap B)}{P(B)}$$

Chain rule: $P(A \cap B) = P(B)P(A \mid B)$ and $B = C \cap D$

$$P(A \mid B) = \frac{P(A \cap B)}{P(B)}$$

Chain rule:
$$P(A \cap B) = P(B)P(A \mid B)$$
 and $B = C \cap D$

$$P(A \mid B) = \frac{P(A \cap B)}{P(B)}$$

$$\downarrow$$
Chain rule: $P(A \cap B) = P(B)P(A \mid B)$ and $B = C \cap D$

$$\downarrow$$

$$P(A \cap C \cap D) = P(C \cap D)P(A \mid C \cap D)$$

$$\downarrow$$

$$P(A \cap C \cap D) = P(D)P(C \mid D)P(A \mid C \cap D)$$

$$P(A\mid B)=\frac{P(A\cap B)}{P(B)}$$
 Chain rule:
$$P(A\cap B)=P(B)P(A\mid B) \quad \text{and} \quad B=C\cap D$$

$$P(A\cap C\cap D)=P(C\cap D)P(A\mid C\cap D)$$

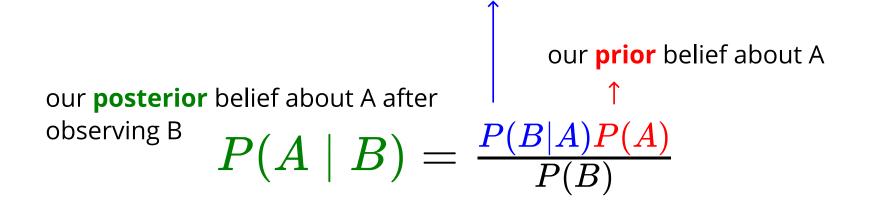
 $P(A \cap C \cap D) = P(D)P(C \mid D)P(A \mid C \cap D)$

More generally: $P(A_1 \cap ... \cap A_n) = P(A_1)P(A_2 \mid A_1)...P(A_n \mid A_1 \cap ... \cap A_{n-1})$

Bayes' rule

Reasoning about the event A:

likelihood of the event B if A were to happen



Bayes' rule; example

- 1% of the population has cancer
- cancer test
 - False positive 10%
 - False negative 5%
- chance of having cancer given a positive test result?
- sample space?
- events A, B?
- prior? lilkelihood?

- {TP, TN, FP, FN}
- {IP, IN, FP, FN}
 A = {TP, FN}, B = {TP, TN}
 P(A) = .01, P(B | A) = .9

$$P(A \mid B) = \frac{P(B|A)P(A)}{P(B)}$$

Bayes' rule; example

- 1% of the population has cancer
- cancer test
 - False positive 10%
 - False negative 5%
- chance of having cancer given a positive test result?
- sample space?
- events A, B?
- prior? lilkelihood?
- P(B) is not trivial

- {TP, TN, FP, FN}
- TP, TN, FP, FN;
 A = {TP, FN}, B = {TP, TN}
 P(A) = .01, P(B | A) = .9

posterior

 $P(A \mid B) = \frac{P(B|A)P(A)}{P(B)}$

likelihood prior

$$P(cancer \mid +) \propto P(+ \mid cancer)P(cancer) = .009$$

 $P(cancer \mid -) \propto P(+ \mid cancer)P(cancer) = .99 \times .1 = .099$ $\Rightarrow P(cancer \mid +) = \frac{.009}{.009 + .099} \approx .08$

Independence
$$P \models (A \perp B)$$

Events **A** and **B** are independent *iff*

$$P(A \cap B) = P(A)P(B)$$

Observing A does not change P(B)

Independence

$$P \models (A \perp B)$$

Events **A** and **B** are independent iff

$$P(A \cap B) = P(A)P(B)$$

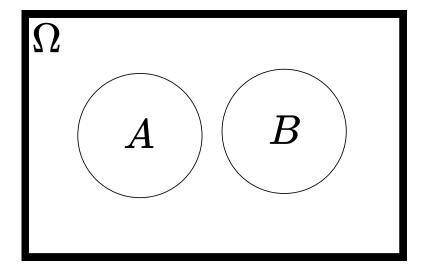
Observing A does not change P(B)

using
$$P(A \cap B) = P(A)P(B \mid A)$$

Equivalent definition: $P(B) = P(B \mid A)$ or P(A) = 0

Independence; example

Are A and B independent?



Independence; example

Example 1:
$$P(\mathrm{hhh}) = P(\mathrm{hht}) \ldots = P(\mathrm{ttt}) = \frac{1}{8}$$

$$P(h * * | * t *) = P(h * *) = \frac{1}{2}$$

equivalently:
$$P(h t^*) = P(*t^*)P(h^{**}) = \frac{1}{4}$$

Independence; example

Example 1:
$$P(\mathrm{hhh}) = P(\mathrm{hht}) \dots = P(\mathrm{ttt}) = \frac{1}{8}$$

$$P(h * * | * t *) = P(h * *) = \frac{1}{2}$$

equivalently:
$$P(h t^*) = P(*t^*)P(h^**) = \frac{1}{4}$$

Example 2: are these two events independent?

$$P(\{ht, hh\}) = .3, P(\{th\}) = .1$$

Conditional independence $P \models (A \perp B \mid C)$

a more common phenomenon: $P(A \cap B \mid C) = P(A \mid C)P(B \mid C)$

Conditional independence $P \models (A \perp B \mid C)$

a more common phenomenon: $P(A \cap B \mid C) = P(A \mid C)P(B \mid C)$

using
$$P(A \cap B \mid C) = P(A \mid C)P(B \mid A \cap C)$$

Conditional independence $P \models (A \perp B \mid C)$

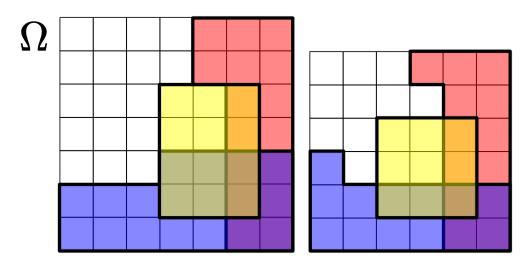
a more common phenomenon: $P(A \cap B \mid C) = P(A \mid C)P(B \mid C)$

using
$$P(A \cap B \mid C) = P(A \mid C)P(B \mid A \cap C)$$

Equivalent definition: $P(B \mid C) = P(B \mid A \cap C)$ or $P(A \cap C) = 0$

Conditional independence; example

Generalization of independence: $P(A \cap B \mid C) = P(A \mid C)P(B \mid C)$



$$P \models (R \perp B \mid Y)$$

from: wikipedia

Summary

Basics of probability

- Outcome space: a set
- **Event:** a subset of outcomes
- **Event space:** a set of events
- **Probability dist.** is associated with events
- Conditional probability: based on intersection of events
- Chain rule follows from conditional probability
- (Conditional) independence: relevance of some events to others

Random Variable

is an **attribute** associated with each outcome $X: \Omega \to Val(X)$

- intensity of a pixel
- head/tail value of the first coin in multiple coin tosses
- first draw from a deck is larger than the second

a formalism to define **events** $P(X = x) \triangleq P(\{\omega \in \Omega \mid X(\omega) = x\})$

Random Variable

is an **attribute** associated with each outcome $X:\Omega o Val(X)$

- intensity of a pixel
- head/tail value of the first coin in multiple coin tosses
- first draw from a deck is larger than the second

a formalism to define **events** $P(X = x) \triangleq P(\{\omega \in \Omega \mid X(\omega) = x\})$

Example: three tosses of coin

- number of heads $X_1:\Omega \to \{0,1,2,3\}$
- number of heads in the first two trials $X_2:\Omega \to \{0,1,2\}$
- ullet at least one head $X_3:\Omega
 ightarrow \{True,False\}$

is an **attribute** associated with each outcome $X:\Omega \to Val(X)$ a formalism to define **events** $P(X=x) \triangleq P(\{\omega \in \Omega \mid X(\omega)=x\})$

- outcomes that we care about: $X_1 = x_1, \dots, X_n = x_n$
- ullet cannonical outcome space: $\Omega_c riangleq Val(X_1) imes \ldots imes Val(X_n)$

is an **attribute** associated with each outcome $X:\Omega o Val(X)$

a formalism to define **events** $P(X = x) \triangleq P(\{\omega \in \Omega \mid X(\omega) = x\})$

- outcomes that we care about: $X_1 = x_1, \dots, X_n = x_n$
- ullet cannonical outcome space: $\Omega_c riangleq Val(X_1) imes \ldots imes Val(X_n)$

$$P(X_1=x_1,\ldots,X_n=x_n) riangleq P(X_1=x_1\cap\ldots\cap X_n=x_n)$$

is an **attribute** associated with each outcome $X:\Omega o Val(X)$

a formalism to define **events** $P(X = x) \triangleq P(\{\omega \in \Omega \mid X(\omega) = x\})$

- outcomes that we care about: $X_1 = x_1, \dots, X_n = x_n$
- ullet cannonical outcome space: $\Omega_c \triangleq Val(X_1) imes \ldots imes Val(X_n)$

$$egin{aligned} P(X_1 = x_1, \dots, X_n = x_n) & riangleq P(X_1 = x_1 \cap \dots \cap X_n = x_n) \ P(X_1 = x_1) = \sum_{x_2, \dots, x_n} P(X_1 = x_1, \dots, X_n = x_n) \end{aligned}$$

is an **attribute** associated with each outcome $X:\Omega \to Val(X)$ a formalism to define **events** $P(X=x) \triangleq P(\{\omega \in \Omega \mid X(\omega)=x\})$

- outcomes that we care about: $X_1 = x_1, \dots, X_n = x_n$
- ullet cannonical outcome space: $\Omega_c \triangleq Val(X_1) imes \ldots imes Val(X_n)$
- joint probability: $P(X_1=x_1,\ldots,X_n=x_n)\triangleq P(X_1=x_1\cap\ldots\cap X_n=x_n)$

$$P(X_1 = x_1) = \sum_{x_2, \dots, x_n} P(X_1 = x_1, \dots, X_n = x_n)$$

is an **attribute** associated with each outcome $X:\Omega \to Val(X)$ a formalism to define **events** $P(X=x) \triangleq P(\{\omega \in \Omega \mid X(\omega)=x\})$

- outcomes that we care about: $X_1 = x_1, \dots, X_n = x_n$
- ullet cannonical outcome space: $\Omega_c \triangleq Val(X_1) imes \ldots imes Val(X_n)$
- joint probability: $P(X_1=x_1,\ldots,X_n=x_n) riangleq P(X_1=x_1\cap\ldots\cap X_n=x_n)$
- ullet marginal probability: $P(X_1=x_1)=\sum_{x_2,\ldots,x_n}P(X_1=x_1,\ldots,X_n=x_n)$

Random Variable; example

Three tosses of coin

number of heads $X_1:\Omega o \{0,1,2,3\}$

first trial is a head $X_2:\Omega \to \{True,False\}$

Cannonical **outcome space**: $\Omega_c = \{(0, True), \dots, (3, False)\}$

a joint probability		0	1	2	3	P(X2)
	True	.1	.1	.4	.05	.65
	False	.2	(.01)	.09	.05	.35
marginal probability	P(X1)	.3	.11	.49	.1	

Conditional independence for RVs

Given random variables X, Y, Z
$$P \models (X \perp Y \mid Z)$$
 iff
$$P \models (X = x \perp Y = y \mid Z = z) \quad \forall x, y, z$$

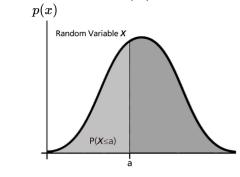
Therefore
$$P \models (X \perp Y \mid Z)$$
 iff $P(X,Y \mid Z) = P(X \mid Z)P(Y \mid Z)$ OR
$$P(X \mid Y,Z) = P(X \mid Z)$$

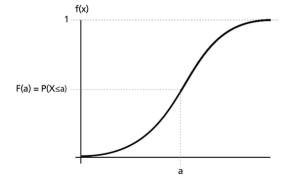
Marginal independence: $P \models (X \perp Y \mid \emptyset)$

Continuous domain

probability **density** function (pdf) $p: Val(X) o [0, +\infty)$ s.t. $\int_{Val(X)} p(x) \mathrm{d}x = 1$

$$P(X \leq a) riangleq ilde{\int_{-\infty}^a p(x) \mathrm{d}x}$$
 $F(a):$ the cumulative distribution function (cdf)





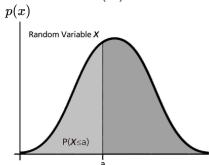
Continuous domain

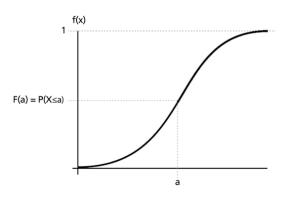
probability **density** function (pdf) $p: Val(X) o [0, +\infty)$ s.t. $\int_{Val(X)} p(x) \mathrm{d}x = 1$

$$P(X \leq a) riangleq frac{\int_{-\infty}^a p(x) \mathrm{d}x}{}$$

F(a): the cumulative distribution function (cdf)

- note that often P(X = x) = 0
- p(x) can be larger than 1
 - it is not a probability distribution
- $P(a \le X \le b) = F(b) F(a)$





Continuous domain

probability **density** function (pdf) $p: Val(X) \to [0, +\infty)$ s.t. $\int_{Val(X)} p(x) dx = 1$

for **discrete** domains:

ullet probability mass function (pmf) p(x) riangleq P(X=x) s.t. $\sum_{Val(X)} p(x) = 1$

Continuous domain; multivariate case

Joint density of multipe RVs: (same conditions)

$$P(X_1 \leq a_1, \ldots, X_n \leq a_n) riangleq \int_{-\infty}^{a_1} \ldots \int_{-\infty}^{a_n} p(x_1, \ldots, x_n) \mathrm{d}x_n \ldots \mathrm{d}x_1$$

 $F(a_1,\ldots,a_n): \ \mathsf{joint}\ \mathsf{CDF}$

Continuous domain; multivariate case

Joint density of multipe RVs: (same conditions)

$$P(X_1 \leq a_1, \ldots, X_n \leq a_n) \triangleq \int_{-\infty}^{a_1} \ldots \int_{-\infty}^{a_n} p(x_1, \ldots, x_n) \mathrm{d}x_n \ldots \mathrm{d}x_1$$

$$F(a_1,\ldots,a_n): \ \mathsf{joint}\ \mathsf{CDF}$$

Marginal density:
$$p(x_1) = \int_{-\infty}^{a_2} \dots \int_{-\infty}^{a_n} p(x_1, \dots, x_n) \mathrm{d}x_n \dots \mathrm{d}x_2$$

ullet marginal CDF $F(x_1) = \lim_{x_2,\dots,x_n o \infty} F(x_1,\dots,x_n)$

Continuous domain; conditional case

Conditional distribution: $P(X \mid Y = y) = \frac{P(X,Y=y)}{P(Y=y)}$ zero measure!

Take the limit $\epsilon \to 0$ in: $P(X \le a \mid y - \epsilon \le Y \le y + \epsilon) = \frac{\int_{-\infty}^a \int_{e=-\epsilon}^\epsilon p(x,y+e) \mathrm{d}e \mathrm{d}x}{\int_{e=-\epsilon}^\epsilon p(y+e) \mathrm{d}e}$

Continuous domain; conditional case

Conditional distribution: $P(X \mid Y = y) = \frac{P(X,Y=y)}{P(Y=y)}$ zero measure!

Take the limit
$$\epsilon \to 0$$
 in: $P(X \le a \mid y - \epsilon \le Y \le y + \epsilon) = \frac{\int_{-\infty}^a \int_{e=-\epsilon}^\epsilon p(x,y+e) \mathrm{d}e \mathrm{d}x}{\int_{e=-\epsilon}^\epsilon p(y+e) \mathrm{d}e}$

using
$$\int_{e=-\epsilon}^{\epsilon} f(y+e) \mathrm{d}e = 2\epsilon f(y) + \mathcal{O}(\epsilon^2)$$

$$P(X \leq a \mid y - \epsilon \leq Y \leq y + \epsilon) pprox rac{\int_{-\infty}^a p(x,y) \mathrm{d}x}{p(y)}$$

Continuous domain; conditional case

Conditional distribution: $P(X \mid Y = y) = \frac{P(X,Y=y)}{P(Y=y)}$ zero measure!

Take the limit
$$\epsilon \to 0$$
 in: $P(X \le a \mid y - \epsilon \le Y \le y + \epsilon) = \frac{\int_{-\infty}^a \int_{e=-\epsilon}^\epsilon p(x,y+e) \mathrm{d}e \mathrm{d}x}{\int_{e=-\epsilon}^\epsilon p(y+e) \mathrm{d}e}$

using
$$\int_{e=-\epsilon}^{\epsilon} f(y+e) \mathrm{d}e = 2\epsilon f(y) + \mathcal{O}(\epsilon^2)$$

$$P(X \leq a \mid y - \epsilon \leq Y \leq y + \epsilon) pprox rac{\int_{-\infty}^a p(x,y) \mathrm{d}x}{p(y)}$$

Conditional density of $P(X \mid Y = y)$ is $p(x \mid y) = rac{p(x,y)}{p(y)}$

• extends Bayes' rule and chain rule and conditional independence to **densities**

Functions of random variables

- RV is a function of the outcome $X:\Omega o Val(X)$
- therefore $g(X) = g(X(\omega))$ is an RV itself
 - E.g., $Y = X_1 + X_2$

Expectation & Variance

Expectation:
$$\mathbb{E}[X] riangleq \sum_{x \in Val(X)} xp(x)$$
 OR $\mathbb{E}[X] riangleq \int_{x \in Val(X)} xp(x) \mathrm{d}x$

- linearity: $\mathbb{E}[X + aY] = \mathbb{E}[X] + a\mathbb{E}[Y]$
 - X:# heads, Y:#heads in the first trial (X&Y are not independent)
- for independent X & Y

$$egin{aligned} \mathbb{E}[XY] &= \sum_{x,y \in Val(X) imes Val(Y)} p(x,y)(xy) = \sum_{x,y \in Val(X) imes Val(Y)} p(x)p(y)(xy) \ &= (\sum_{x \in Val(X)} xp(x))(\sum_{y \in Val(Y)} yp(y)) = \mathbb{E}[X]\mathbb{E}[Y] \end{aligned}$$

Expectation & Variance

- for independent X and Y Var[X + Y] = Var[X] + Var[Y]
 - if not independent Var[X + Y] = Var[X] + Var[Y] + 2 Cov[X, Y]
- Covariance: $Cov[X,Y] \triangleq \mathbb{E}[XY \mathbb{E}[XY]] = \mathbb{E}[XY \mathbb{E}[X]\mathbb{E}[Y]$
 - generalizes variance Cov[X, X] = Var[X]
 - symmetric & bilinear Cov[aX, bY] = abCov[Y, X]

Classical members of exponential family of distribution

Gaussian

more on this later

- Bernoulli
- Binomial
- Multinomial
- Gamma
- Exponential
- Poisson
- Beta
- Dirichlet

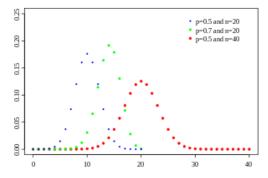
Bernoulli:
$$P(X=1;\mu)=\mu$$
 $0\leq\mu\leq1$ OR $p(x;\mu)=\mu^x(1-\mu)^{1-x}$

• discrete distribution with $Val(X) = \{0, 1\}$

Binomial:
$$P(X=k;\mu,n)=\binom{n}{k}\mu^k(1-\mu)^{n-k}$$

- dist. over the number of ones in *n* independent Bernoulli trials
- number of heads in n coin toss

$$Val(X) = \{0, \dots, n\}$$



Categorical (aka. multinulli):
$$P(X = l; \mu) = \mu_l$$
 where $\sum_{l} \mu_l = 1$

• fully parameterized discrete distribution with $Val(X) = \{0..., L\}$

Multinomial distribution: $P(X_1=x_1,\ldots,X_L=x_L;\mu,n)=\mathbb{I}(\sum_l x_l=n) \frac{n!}{\prod_l x_l!} \prod_l \mu_l^{x_l}$

dist. over the number of different outcomes in n independent categorial trials

Uniform:

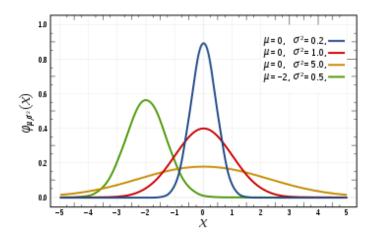
ONTINUOUS
$$Val(X) = [a,b]$$
 $p(x) = egin{cases} rac{1}{b-a} & ext{for } a \leq x \leq b, & rac{1}{b-a} \\ 0 & ext{for } x < a ext{ or } x > b \end{cases}$

- DISCRETE $Val(X) = \{a, a+1, \ldots, b\}$
 - max-entropy discrete distribution

$$P(X=j)=rac{1}{n}$$

Gaussian:
$$p(x;\mu,\sigma)=rac{1}{\sqrt{2\pi\sigma^2}}e^{-rac{(x-\mu)^2}{2\sigma^2}}$$

- motivated by central limit theorem
- max-entropy dist. with a fixed variance



Summary

Adding random variables

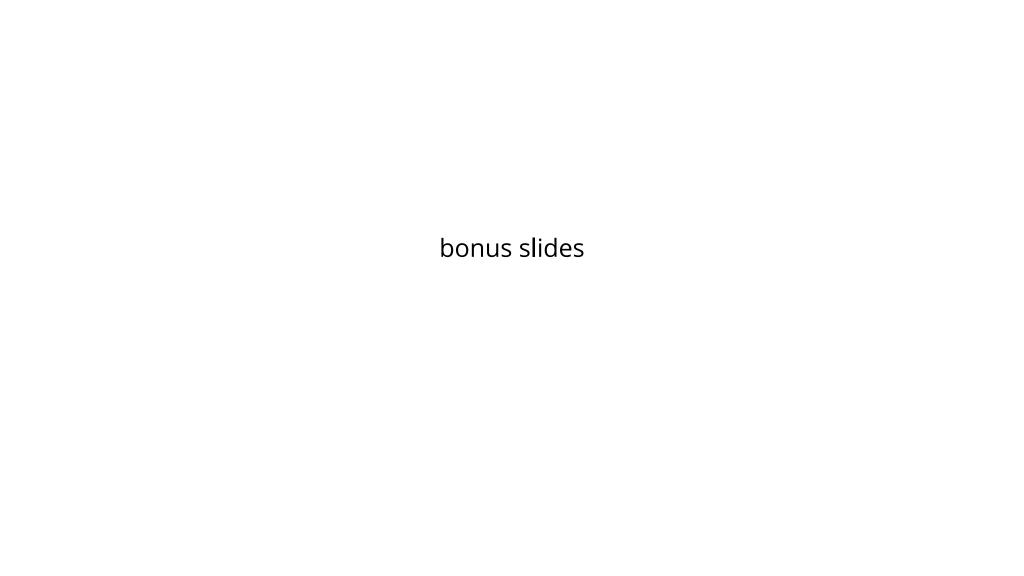
- Random variable: assigns a value to each outcome
 - **Event (using RV):** set of outcomes with a particular attribute
 - Prob. dist., cond. prob., chain rule, indep. ... are all extended to RVs
- Continuous domains: same definition of probability, event, RV etc.
 - **Specifying** the prob. dist. using **density function**

Summary

Notation

- random variable X,Y,Z $\mathbf{X}=[X_1,\ldots,X_n]$
- variable x, y, z
- PDF, PMF $p(x), p(\mathbf{x}), p(x, y)$
- PDF, PMF $p(x), p(\mathbf{x}), p(x,y)$ probability distribution $P(X), P(x) \triangleq P(X=x)$
- domain of an RV Val(X), Val(X, Y, Z)

use interchangeably



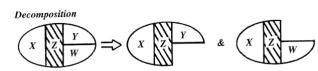
Properties of conditional independence

- Symmetry: $(X \perp Y \mid Z) \Rightarrow (Y \perp X \mid Z)$
- Decomposition: $(X \perp Y, W \mid Z) \Rightarrow (X \perp Y \mid Z)$
- Weak union: $(X \perp Y, W \mid Z) \Rightarrow (X \perp Y \mid W, Z)$
- Contraction:

$$(X \perp Y \mid W, Z) \& (X \perp W \mid Y, Z) \Rightarrow (X \perp Y, W \mid Z)$$

• Intersection: *if P is positive*

$$(X\perp W\mid Y,Z)\&(X\perp Y\mid Z)\Rightarrow (X\perp Y,W\mid Z)$$



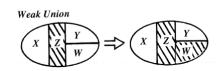
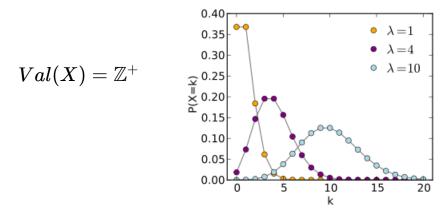




image: Pearl's book

Poisson: $p(x;\lambda)=rac{\lambda^x e^{-\lambda}}{x!}$ where $\lambda>0$ is the mean frequency (rate parameter)

- frequency of rare events
- events are assumed independent
- similar to binomial with large number of trials $(\lambda \approx n\mu)$



Exponential: $p(x; \lambda) = \lambda e^{-\lambda x}$ where $\lambda > 0$

- time between events in Poisson dist.
- memoryless property

$$\lambda > 0$$

$$\begin{array}{c} \lambda > 0 \\ 0.5 \\ 0.6 \\ 0.4 \\ 0.0 \\ 0.0 \end{array}$$

$$\begin{array}{c} \lambda = 0.5 \\ \lambda = 1 \\ \lambda = 1.5 \\ 0.6 \\ 0.4 \\ 0.0 \\ 0.0 \end{array}$$

$$\begin{array}{c} \lambda = 0.5 \\ \lambda = 1 \\ \lambda = 1.5 \\ 0.0 \\ 0.4 \\ 0.0 \\ 0.4 \\ 0.0 \\ 0.0 \end{array}$$

$$\begin{array}{c} \lambda = 0.5 \\ \lambda = 1 \\ \lambda = 1.5 \\ 0.4 \\ 0.2 \\ 0.0 \\ 0 \end{array}$$

Geometric: $p(x,k;\mu) = (1-\mu)^{k-1}\mu$ where $0 < \mu < 1$

- number of Bernoulli trials until success
- memoryless property

