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Learning objectives

Probability distribution and density functions
Random variable

Bayes' rule

Conditional independence

Expectation and Variance



Sample space ()

() = {w}: the set of all possible outcomes (a.k.a. outcome space)

Example1: three tosses of a coin 2 = {hhh, hht, hth, ...ttt}
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image: http://web.mnstate.edu/peil/MDEV102/U3/S25/Cartesian3.PNG




Sample space ()

(2 = {w} : the set of all possible outcomes (a.k.a. outcome space)

Example 2: two dice

Q={(1,1),...,(6,6)}

Image source: http://www.stat.ualberta.ca/people/schmu/preprints/article/Article.ntm



Sample space )

(2 = {w} : the set of all possible outcomes (a.k.a. outcome space)

Example 3: 2 cards from a deck
(assuming order doesn't matter)
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Event space S

An event F C Q is a set of outcomes

event space § C 2 is a set of events



Event space S

An event F C Q is a set of outcomes

event space S C 2% is a set of events

Example:
Event: at least two heads F = {hht,thh, hth, hhh}

Event: pair of aces |F| =6 A

@



Event space S

Requirements for event space:

e Complement of an eventisalsoanevent AcS Q- AcS
e [ntersection of events is also an event AL BeS—ANBeS

Example:

at least one head € S — noheads € S

at least one head, at least one tail € S — at least one head and one tail € S



Probability distribution

Assigns a real value to eachevent P: S - R

Probability axioms (Ko/mogorov axioms)

e Probability is non-negative P(A) >0

e The probability of disjoint events is additive
ANB=0— P(AUB)=P(A) + P(B)

¢ P(Q) =1



Probability distribution

Probability axioms (Ko/mogorov axioms)

e Probability is non-negative P(4) >0
e disjoint events are additive: AnB=0— P(AUB) = P(A) + P(B)

e P(Q)=1

Derivatives:
e P(0)=0 e P(O\A) =1— P(4)
e P(AUB)=P(A)+ P(B)— P(ANB) e P(AN B) < min{P(A), P(B)}
® union bound: P(AU B) < P(A) + P(B)



Probability distribution; examples
0 ={1,2,3,4,5,6}
S =1{0,9} (a minimal choice of event space)

P®)=0,P() =1



Probability distribution; examples

Q=1{1,2,3,4,5,6}

S={0,9} (aminimal choice of event space) 'V i

P0)=0,P(Q) =1

S = 2% (a maximal choice of event space) '..‘ o
S0

_ 4] :
P(A) — 6 that is P({1,3}) :% (any other consistent assignment is acceptable)



Conditional probability

Probability of an event A after observing the event B

A
P(A| B) = BB



Conditional probability

Probability of an event A after observing the event B

__ P(ANB)
P(A| B) = P(B) ¢ P(B) >0




Conditional probability

Probability of an event A after observing the event B

__ P(ANB)
P(A’B)_W< P(B) >0

Example: three coin tosses

P(at least one head and one tail)

P(at least one head | at least one tail) = P(at loast one tail)



Chain rule

A
P(A|B) = ZgY




Chain rule

P(A|B) = P](;é;?
\

Chainrule: P(ANB) = P(B)P(A|B)



Chain rule

P(A| B) = P{oD)
}

Chainrule: P(ANB)=P(B)P(A|B) and B=CnD




Chain rule

P(ANB
P(A | B) — 1(3(3))
'
Chainrule: P(ANB)=P(B)P(A|B) and B=CnD

'

P(ANCND)=P(CND)P(A|CnND)



Chain rule

P(A | B) P(ANB)

j P(B)
Chainrule: P(ANB)=P(B)P(A|B) and B=CnD
'
P(ANnCND)=P(CND)P(A|CnND)
.

P(ANC N D)= P(D)P(C | D)P(A|Cn D)



Chain rule

P(A | B) P(ANB)

j P(B)
Chainrule: P(ANB)=P(B)P(A|B) and B=CnD
'
P(ANnCND)=P(CND)P(A|CnND)
.

P(ANC N D)= P(D)P(C | D)P(A|Cn D)

More genera"y: P(Al N... ﬂAn) = P(Al)P(A2 | Al) P(An | A1 N... ﬂAn_l)



Bayes' rule

Reasoning about the event A:

likelihood of the event B if A were to happen

our prior belief about A

our posterior belief about A after T

observing B P(B|A A




Bayes' rule; example

1% of the population has cancer

test posterior likelihood prior
cancer tes

__ P(BJA)P(A)
= False positive 10% P(A| B) = e

= False negative 5%
chance of having cancer given a positive test result?
sample space? - o {TP, TN, FP, FN}
events A, B? - e A={TP, FN}, B ={TP, TN}
prior? lilkelihood? - e P(A)=.01,P(B|A)=.9



Bayes' rule; example

e 1% of the population has cancer

e cancer test posterior likelihood prior
__ P(B|A)P(A)
= False positive 10% P(A| B) = b

= False negative 5%
e chance of having cancer given a positive test result?

e sample space? - e {TP, TN, FP, FN}
e events A, B? - e A={TP, FN}, B={TP, TN}
e prior? lilkelihood? - e P(A)=.01,P(B|A)=.9

e P(B) is not trivial

P(cancer | +) o< P(+4 | cancer)P(cancer) = .009
( [ +) o P+ P ) = P(cancer | +) = G5prngs ~ -08
P(cancer | —) o< P(+ | cancer)P(cancer) = .99 x .1 = .099 Rt



Independence P = (A@f)

Events A and B are independent iff J_|_

P(AN B) = P(A)P(B)

Observing A does not change P(B)



Independence P = (A@f)

Events A and B are independent iff J_|_

P(AN B) = P(A)P(B)

Observing A does not change P(B)
using P(ANB)=P(A)P(B|A)

Equivalent definition: P(B) — P(B | A) or P(A)=0



Independence; example

Are A and B independent?

Y/



Independence; example

Example 1: P(hhh) = P(hht)... = P(ttt) = §

equivalently: P(ht*)=P(*t*)P(h*¥)

N[

>~



Independence; example

Example 1: P(hhh) = P(hht)... = P(ttt) = §
P(h** | *t*):P(h**) —

equivalently: P(ht*)=P(*t*)P(h**) =

Example 2: are these two events independent?

P({ht,hh}) = .3, P({th}) = .1

DN

==



Conditional independence P = (4 1 B|C)

a more common phenomenon: P(ANB|C)=PA|C)P(B|C)



Conditional independence P = (4 1 B|C)

a more common phenomenon: P(ANB|C)=PA|C)P(B|C)

using PANB|C)=PA|C)P(B|ANC)



Conditional independence P = (4 1 B|C)

a more common phenomenon: P(ANB|C)=PA|C)P(B|C)

using PANB|C)=PA|C)P(B|ANC)

Equivalent definition: P(B|C)=P(B|ANC) or P(ANC)=0



Conditional independence; example

Generalization of independence: P(ANB|C)=P(A|C)P(B|C)

Y/

PL(RLB| )

from: wikipedia



Summary

e Outcome space: a set

e Event: a subset of outcomes

e Event space: a set of events

e Probability dist. is associated with events

e Conditional probability: based on intersection of events

Chain rule follows from conditional probability

(Conditional) independence: relevance of some events to others



Random Variable

is an attribute associated with each outcome X : Q — Val(X)

¢ intensity of a pixel
e head/tail value of the first coin in multiple coin tosses
e first draw from a deck is larger than the second

a formalism to define events P(X =z) =2 P{w e Q| X(w) = z})



Random Variable

is an attribute associated with each outcome X : Q — Val(X)

¢ intensity of a pixel
e head/tail value of the first coin in multiple coin tosses
e first draw from a deck is larger than the second

a formalism to define events P(X =z) =2 P{w e Q| X(w) = z})

Example: three tosses of coin

e number of heads Xi:Q — {0,1,2,3}
e number of heads in the first two trials X, :Q — {0,1,2}
e gt least one head Xx; : Q — {True, False}



Random Variable (RV)

is an attribute associated with each outcome x : Q — Val(X)

a formalism to define events P(X =z) 2 P{w € Q| X(w) = z})

Multiple RVs: X;,..., X,

e outcomes that we care about: X, =z,..., X, =z,
* cannonical outcome space: Q, 2 Val(X1) x ... x Val(Xy)



Random Variable (RV)

is an attribute associated with each outcome x . Q — Val(X)

a formalism to define events P(X =z) 2 P{w € Q| X(w) = z})

Multiple RVs: X;,..., X,

e outcomes that we care about: X, =z,..., X, =z,
* cannonical outcome space: Q, 2 Val(X1) x ... x Val(Xy)

PXi=z1,...,Xn=2,) = P(X1=21N...N X, = x,)



Random Variable (RV)

is an attribute associated with each outcome x : Q — Val(X)

a formalism to define events P(X =z) 2 P{w € Q| X(w) = z})

Multiple RVs: X;,..., X,

e outcomes that we care about: X, =zq,..., X, =z,
* cannonical outcome space: Q, 2 Val(X1) x ... x Val(Xy)
PXi=z1,...,Xn=2,) = P(X1=21N...N X, = x,)
PXi=z)=3,, . PXi=z,...,Xy=2)




Random Variable (RV)

is an attribute associated with each outcome x : Q — Val(X)

a formalism to define events P(X =z) 2 P{w € Q| X(w) = z})

Multiple RVs: X;,..., X,

e outcomes that we care about: X, =z,..., X, =z,

* cannonical outcome space: Q, 2 Val(X1) x ... x Val(Xy)

e joint probability: p(Xy =z1,...,Xp =22) 2 P(X1 =210 ...N Xy = Tn)
P(Xi=m) = Exg,...,ccn P(Xi=m,...,Xn = zp)




Random Variable (RV)

is an attribute associated with each outcome x : Q — Val(X)

a formalism to define events P(X =z) 2 P{w € Q| X(w) = z})

Multiple RVs: X;,..., X,

e outcomes that we care about: X, =z,..., X, =z,

* cannonical outcome space: Q, 2 Val(X1) x ... x Val(Xy)

e joint probability: p(Xy =z1,...,Xp =22) 2 P(X1 =210 ...N Xy = Tn)
e marginal probability: p(x, = z;) =% P(Xi=w1,..., X, = o)

T2y. « oyLn




Random Variable; example

Three tosses of coin
number of heads X::Q—{0,1,2,3}
first trial is a head Xy : Q — {True, False}

Cannonical outcome space: Q.= {(0,True),..., (3, False)}
atomic outcome

2 joint probability 0o 1 2 3 P(X2)

True J J A4 .05 .65

False 2 .09 .05 .35

marginal probability PX)| 3 11 49 1




Conditional independence for RVs

Given random variables X,Y,Z PE(X LY |2) iff

PE(X=2lY=y|Z=2) V4,2
Therefore P=(X LY | 2)iff P(X,Y|2Z)=P(X|Z)P(Y|2Z2)

OR
P(X|Y,Z)=P(X|2)

Marginal independence: P (X LY |0)



Continuous domain
probability density function (pdf) p:Val(X) = [0,+00) st [,y p(x)dz =1

P(X <a)= [*_p(z)dz
F(a) : the cumulative distribution function (cdf)

P(X<a)

flx)

F(a) = P(X<a)




Continuous domain

probability density function (pdf) p:Val(X) = [0,+00) st [,y p(x)dz =1

p(z)
P(X <a) 2 [* p(z)de -
F(a) : the cumulative distribution function (cdf)
P(X<a)
e note that often P(X =z) =0
e p(z) can be larger than 1 0

= jtis not a probability distribution

® Pla< X <b)=F(@) — F(a) Fla) = PlX=a)




Continuous domain

probability density function (pdf) p: vai(

for discrete domains:

e probability mass function (pmf) P(z) = P(X

X) —

[0

, +00)

s.t.

fVal(X) p(z)dz =



Continuous domain: multivariate case

Joint density of multipe RVs: (same conditions)

P(Xi<ai,...,Xp <ap) = [ o0 p(, .. xn)de, . da

—00

F(ai,...,an) : joint CDF



Continuous domain: multivariate case

Joint density of multipe RVs: (same conditions)

P(Xi<ai,...,Xp <ap) = [ o0 p(, .. xn)de, . da

—0o0

F(ai,...,a,): joint CDF

Marginal density: p(z,) = [ ... [* p(z1,...,2z5)dZy ... dz

_w p—

¢ marginal CDF F($1) = limm2,...,xn—>oo F(wla sy xn)



Continuous domain: conditional case

Conditional distribution: P(X |Y =y) =520

Take the limit € — 0 in: PX<a|ly—e<Y <y+e) = f""fe{eigf;?ededm




Continuous domain: conditional case

P(X,Y=y)
P(Y=y) zero measure!

Conditional distribution; P(X|Y =y) =

Take the limit e > 0in: P(X<a|y—e<Y <y+e == fj ﬁ:?jedm
using [ . f(y+ e)de = 2f(y) + O(e) l
z,y)dz

P X<a|ly—e<Y <y+e)~r &=



Continuous domain: conditional case

Conditional distribution: P(X |Y =y) = 2&Y=y

P(Y=y) zero measure!

(z,y+e)dedx

Take the limit € — 0 in: PX<aly—e<Y <y+e)= f""fl p(te)de

using [ f(y + e)de = 26£(y) + O() l

PX<al|ly—e<Y<y+e)~

Conditional density of P(X |V =y)is p(z | y) = 2&¥

e extends Bayes' rule and chain rule and conditional independence to densities



Functions of random variables

* RVis a function of the outcome x . 0 — val(X)
e therefore g(X)=g(X(w))isan RV itself

u Eg, Y = X1+ Xy



Expectation & Variance

Expectation: E[X]= > eevax) ZP(z) OR  E[X] = Joevax) zp(z)de

e linearity: E[X + aY] = E[X] + aE[Y]
B X:# heads, Y:#heads in the first trial (X&Y are not independent)

e forindependent X &Y

E[XY] =2, jevax)«va) P& Y)(@Y) = D0 yevax)«vae) P(@)P(Y) (2y)

= (Xeevax) 20(2)) (Lyevay) yP(y)) = E[X]E[Y]



Expectation & Variance

Variance: var[X] 2 E[(X - E[X])?]
= E[X? + E[X]? — 2XE[X]] = E[X?] + E[X]* — 2E[X]E[X] = E[X?] — E[X]?
e forindependentXandyY vVar[X +Y]=Var[X]+ Var[Y]
= if notindependent Var[X +Y] =Var(X]|+ Var[Y] +2Cov[X,Y]
e Covariance: cow[X,Y]2E[XY —E[XY]] = E[XY — E[X|E[Y]
= generalizes variance CovlX, X] = Var[X]
= symmetric & bilinear CovlaX,bY] = abCov|Y, X]



Examples of probability dists.

Classical members of exponential family of distribution

® Gaussian more on this later
® Bernoulli

® Binomial

® Multinomial

® Gamma

® Exponential

® Poisson

® Beta

® Dirichlet



Examples of probability dists.

Bernoulli: P(X =L;p)=p 0<p<1 OR pl;p) =p"(1—-p)'®

e discrete distribution with Val(X) = {0,1}

Binomial: p(x =k;u,n) = (M) k(1 — )
e dist. over the number of onesinn mdependent Bernoulli trials

e number of heads in n coin toss

Val(X) = {0,...,n}




Examples of probability dists.

Categorical (aka. multinulli): p(x =1;4) = 1 where S, =1

e fully parameterized discrete distribution with  vai(x)={0...,L}

Multinomial distribution: P(X, = x1,...,Xr = zr;p,n) = 1(3, 21 = n) it [ 7'

e dist. over the number of different outcomes in n
independent categorial trials



Examples of probability dists.

Uniform:

— fora<z<b, 45 - .
® CONTINUOUS Val(X) = [a,b] p(x) =

0 forz <aorx>0b
® DISCRETE Val(X) = {a,a+1,...,b} 0 a b
= max-entropy discrete distribution

=R
I



Examples of probability dists.

1 _ (m_u)2

v27m2e o
e motivated by central limit theorem
e max-entropy dist. with a fixed variance

Gaussian: p(z;p,0) =

10




Summary

Adding random variables

e Random variable: assigns a value to each outcome

= Event (using RV): set of outcomes with a particular attribute

= Prob. dist., cond. prob., chain rule, indep. ... are all extended to RVs
e Continuous domains: same definition of probability, event, RV etc.

m Specifying the prob. dist. using density function



Summary

random variable Xx v,z X =[X1,...,X,]

variable z,y,z

PDF, PMF  p(z),p(x),p(z,y)

probability distribution P(X), P(z) £ P(X
domainofan RV  val(X),Val(X,Y, 2)

use interchangeably



bonus slides



Properties of conditional independence

e Symmetry: (X 1Y |2Z)= (Y LX|2)

Decomposition

e Decomposition: (X LY, W|2)= (X LY|Z2) G@

Weak Union

A\
v/

e Weak union: (x LY, W |2)= (X LY |W,2) N L (Y
\B WS

e Contraction:

Ny \NE: 3
Z & Z - Z\"w
(X¢Y|W,Z)&(XLW|Y,Z):>(X¢Y,W\Z)@@ @D \

Intersection

tio
N ¢ Ny \’\‘Y

image: Pearl's book

e |ntersection: if P is positive
(X LWI|Y,2)&X LY |Z)= (X LY,W|Z)



Examples of probability dists.

A

Poisson: p(z;\) = 25— where X >0 isthe mean frequency
' (rate parameter)

e frequency of rare events
e events are assumed independent
e similar to binomial with large number of trials (A = nu)

0.40

o-Q
0.35} |

0.30f | ]

Val(X)=7Z" ~o2sf | @ A=10 ]
x 020 |ea :

“o1s| o

0.0f /| &, o
o.05f / & A o
_ .

0.00a-aael




Examples of probability dists.

1.6

1.4f

Exponential: p(z;\) = Ae ™ where A >0 12t

e time between events in Poisson dist. EEIE\

0.4}

Val(X) =R+ %

e memoryless property

0.0

A=0.5 ]

A=L15 |

1.0f 0. ]
Geometric: p(z,k;p) = (1 — p)*tu where 0<pu<1 o . . poos]
— o p=O.8A
e number of Bernoulli trials until success 1
e memoryless property 02l ot
Val(X) =N o ¥ 33334s4
2 4 . 6 8 10



