Learning objectives

different goals of learning a graphical model
effect of goals on the learning setup
Where does a graphical model come from?
Where does a graphical model come from?

- designed by **domain experts:**
 - more suitable for directed models
 - cond. probabilities are more intuitive than unnormalized factors
 - no need to estimate the partition function

image: http://blog.londolozi.com/
Where does a graphical model come from?

• designed by **domain experts:**
 ▪ more suitable for directed models
 ◦ cond. probabilities are more intuitive than unnormalized factors
 ◦ no need to estimate the partition function

• **learning** from data:
 ▪ fixed structure:
 ◦ easy for directed models
 ▪ unknown structure
 ▪ fully or partially observed data, hidden variables
Goals of learning: **density estimation**

- **assumption**: data is iid sample from a P^*

$$\mathcal{D} = \{X^{(1)}, \ldots, X^{(M)}\} \quad X^{(m)} \sim P^*$$

Empirical distribution: $P_{\mathcal{D}}(x) = \frac{1}{|\mathcal{D}|} \mathbb{1}(x \in \mathcal{D})$
Goals of learning: density estimation

• **assumption:** data is IID sample from a P^*

\[
\mathcal{D} = \{X^{(1)}, \ldots, X^{(M)}\} \quad X^{(m)} \sim P^*
\]

empirical distribution:

\[
P_\mathcal{D}(x) = \frac{1}{|\mathcal{D}|} \mathbb{1}(x \in \mathcal{D})
\]

• **objective:** learn a \hat{P} close to P^*

\[
\hat{P} = \arg \min_P D_{KL}(P^*\|P)
\]
Goals of learning: **density estimation**

- **assumption**: data is IID sample from a P^*

 $$\mathcal{D} = \{X^{(1)}, \ldots, X^{(M)}\} \quad X^{(m)} \sim P^*$$

 empirical distribution: $P_\mathcal{D}(x) = \frac{1}{|\mathcal{D}|} \mathbb{I}(x \in \mathcal{D})$

- **objective**: learn a \hat{P} close to P^*

 $$\hat{P} = \arg \min_P D_{KL}(P^* || P) = \mathbb{E}_{P^*}[\log P^*] - \mathbb{E}_{P^*}[\log P]$$
Goals of learning: **density estimation**

- **assumption**: data is IID sample from a \(P^* \)
 \[
 \mathcal{D} = \{X^{(1)}, \ldots, X^{(M)}\} \quad X^{(m)} \sim P^*
 \]
 - empirical distribution: \(P_D(x) = \frac{1}{|D|} \mathbb{1}(x \in D) \)

- **objective**: learn a \(\hat{P} \) close to \(P^* \)
 \[
 \hat{P} = \arg \min_P D_{KL}(P^* || P) = \mathbb{E}_{P^*}[\log P^*] - \mathbb{E}_{P^*}[\log P]
 \]
 - negative Entropy of \(P^* \) (does not depend on \(P \))
Goals of learning: **density estimation**

- **assumption:** data is IID sample from a P^*

 $\mathcal{D} = \{X^{(1)}, \ldots, X^{(M)}\} \quad X^{(m)} \sim P^*$

 empirical distribution: $P_D(x) = \frac{1}{|\mathcal{D}|} \mathbb{I}(x \in \mathcal{D})$

- **objective:** learn a \hat{P} close to P^*

 $\hat{P} = \arg\min_P D_{KL}(P^*\|P) = \mathbb{E}_{P^*}[\log P^*] - \mathbb{E}_{P^*}[\log P]$

 negative Entropy of P^* (does not depend on P)

 substitute P^* with P_D: $\hat{P} = \arg\max_P \sum_{x \in \mathcal{D}} \log P(x)$

 how to compare two log-likelihood values?
Goals of learning: density estimation

• assumption: data is IID sample from a P^*

$$\mathcal{D} = \{X^{(1)}, \ldots, X^{(M)}\} \quad X^{(m)} \sim P^*$$

empirical distribution: $P_D(x) = \frac{1}{|\mathcal{D}|} \mathbb{1}(x \in \mathcal{D})$

• objective: learn a \hat{P} close to P^*

$$\hat{P} = \arg \min_P D_{KL}(P^* || P) = \mathbb{E}_{P^*}[\log P^*] - \mathbb{E}_{P^*}[\log P]$$

negative Entropy of P^* (does not depend on P)

substitute P^* with P_D: $\hat{P} = \arg \max_P \sum_{x \in \mathcal{D}} \log P(x)$

log-likelihood

how to compare two log-likelihood values?
Goals of learning: **prediction**

- given $\mathcal{D} = \{(X^{(m)}, Y^{(m)})\}$

interested in learning $\hat{P}(X \mid Y)$

the output in our prediction is structured

making prediction: $\hat{x}(y) = \arg \max_x \hat{P}(x \mid y)$

e.g. in image segmentation
Goals of learning: prediction

- given $\mathcal{D} = \{(X^{(m)}, Y^{(m)})\}$

interested in learning $\hat{P}(X \mid Y)$

the output in our prediction is structured

making prediction: $\hat{x}(y) = \arg\max_x \hat{P}(x \mid y)$

- error measures:
 - 0/1 loss (unforgiving): $\mathbb{E}_{(X,Y) \sim P^*} \mathbb{I}(X = \hat{X}(Y))$
 - Hamming loss: $\mathbb{E}_{(X,Y) \sim P^*} \sum_i \mathbb{I}(X_i = \hat{X}(Y)_i)$
 - conditional log-likelihood: $\mathbb{E}_{(X,Y) \sim P^*} \log \hat{P}(X \mid Y)$

 - takes prediction uncertainty into account
Goals of learning: **knowledge discovery**

given $\mathcal{D} = \{(X^{(m)})\}$

interested in learning \mathcal{G} or \mathcal{H}

finding conditional independencies or causal relationships

E.g. in gene regulatory network

image credit: Chen et al., 2014
Goals of learning: knowledge discovery

given $D = \{(X^{(m)})\}$

interested in learning \mathcal{G} or \mathcal{H}

finding conditional independencies or causal relationships

not always uniquely identifiable

Recall: two DAGs are I-equivalent if $\mathcal{I}(\mathcal{G}) = \mathcal{I}(\mathcal{G}')$

- same undirected skeleton
- same immoralities

E.g. in gene regulatory network

image credit: Chen et al., 2014
bias-variance trade-off

learning *ideally* minimizes some risk (expected loss) $\mathbb{E}_{X \sim \mathcal{P}^*}[\text{loss}(X)]$

in reality we use *empirical risk* $\mathbb{E}_{x \in \mathcal{D}}[\text{loss}(x)]$
bias-variance trade-off

Learning *ideally* minimizes some risk (expected loss) \(\mathbb{E}_{X \sim P^*}[\text{loss}(X)] \)

In reality we use empirical risk \(\mathbb{E}_{x \in D}[\text{loss}(x)] \)

If our model is expressive we can overfit

Low *empirical* risk does not translate to low risk

Our model does not generalize to samples outside \(\mathcal{D} \)

As measured by a validation set

Different choices of \(\mathcal{D} \sim P^* \) produce very different models \(\hat{P} \)

Overfitting in density estimation

Image: http://ipython-books.github.io
bias-variance trade-off

learning *ideally* minimizes some risk \((\text{expected loss})\) \(E_{X \sim P^*}[\text{loss}(X)]\)

in reality we use empirical risk \(E_{x \in D}[\text{loss}(x)]\)

if our model is expressive we can **overfit**

low *empirical* risk does not translate to low risk

our model does not **generalize** to samples outside \(D\)
as measured by a validation set

different choices of \(D \sim P^*\) produce very different models \(\hat{P}\)

simple models cannot fit the data

- the model has a bias even for large \(D\)
if our model is expressive we can **overfit**

learning *ideally* minimizes some **risk** *(expected loss)* $E_{X \sim P^*}[loss(X)]$
in reality we use **empirical risk** $E_{x \in \mathcal{D}}[loss(x)]$

if our model is expressive we can **overfit**

- low empirical risk does not translate to low risk
- our model does not **generalize** to samples outside \mathcal{D}
 - as measured by a validation set
- different choices of $\mathcal{D} \sim P^*$ produce very different models \hat{P}
 - a solution: penalize model complexity **regularization**

simple models cannot fit the data

- the model has a bias even for large \mathcal{D}

bias-variance trade-off

image: http://ipython-books.github.io
Discreminative vs generative

if the goal is prediction: \(\hat{P}(X \mid Y) \)

- **Generative:** learn \(\hat{P}(X, Y) \) and condition on \(Y \) (e.g., MRF)
- **Discriminative:** directly learn \(\hat{P}(X \mid Y) \) (e.g., CRF)
Discreminative vs generative

if the goal is prediction: \(\hat{P}(X \mid Y) \)

- **Generative:** learn \(\hat{P}(X, Y) \) and condition on \(Y \) (e.g., MRF)
- **Discriminative:** directly learn \(\hat{P}(X \mid Y) \) (e.g., CRF)

Example naive Bayes vs logistic regression

- trained generatively (log-likelihood)
- works better on small datasets (higher bias)
- unnecessary cond. ind. assumptions about \(Y \)
- can deal with missing values & learn from unlabeled data

Naive Bayes \[P(X \mid Y) \propto P(X)P(Y \mid X) \]
Discreminative vs generative training

if the goal is prediction: $\hat{P}(X \mid Y)$

- **Generative:** learn $\hat{P}(X, Y)$ and condition on Y (e.g., MRF)
- **Discriminative:** directly learn $\hat{P}(X \mid Y)$ (e.g., CRF)

Example naive Bayes vs logistic regression

Naive Bayes $P(X \mid Y) \propto P(X)P(Y \mid X)$
- trained generatively (log-likelihood)
- works better on small datasets (higher bias)
- unnecessary cond. ind. assumptions about Y
- can deal with missing values & learn from unlabeled data

Logistic regression $P(X = 1 \mid Y) = \sigma(WY + b)$
- trained discriminatively (cond. log-likelihood)
- works better on large datasets
- no assumptions about cond. ind. in Y
Example naive Bayes vs logistic regression on UCI dataset

- **pima (continuous)**
- **adult (continuous)**
- **boston (predict if > median price, continuous)**
- **optdigits (0's and 1's, continuous)**
- **optdigits (2's and 3's, continuous)**
- **ionosphere (continuous)**

from: Ng & Jordan 2001
summary

- learning can have different objectives:
 - density estimation
 - calculating \(P(x) \)
 - sampling from \(P \) (generative modeling)
 - prediction (conditional density estimation)
 - discriminative and generative modeling
 - knowledge discovery
- expressed as empirical risk minimization
 - bias-variance trade-off
 - regularize the model