Graphical Models

Clique trees \& Belief Propagation

Learning objectives

- message passing on clique trees
- its relation to variable elimination
- two different forms of belief propagation

Recap: variable elimination (VE)

- marginalize over a subset - e.g., $\quad P(J)$
- expensive to calculate (why?) $\sum_{C, D, I, G, S, L, H} P(C, D, I, G, S, L, J, H)$
- use the factorized form of P

$$
\sum_{C, D, I, G, S, L} P(D \mid C) P(G \mid D, I) P(S \mid I) P(L \mid G) P(J \mid L, S) P(H \mid G, J)
$$

Recap: variable elimination (VE)

- marginalize over a subset - e.g., $\quad P(H, J)$
- expensive to calculate (why?) $\sum_{C, D, I, G, S, L} P(C, D, I, G, S, L)$
- use the factorized form of P

Recap: variable elimination (VE)

- marginalize over a subset - e.g., $\quad P(H, J)$
- expensive to calculate (why?) $\sum_{C, D, I, G, S, L} P(C, D, I, G, S, L)$
- use the factorized form of P

$$
\sum_{C, D, I, G, S, L} \phi_{1}(D, C) \phi_{2}(G, D, I) \phi_{3}(S, I) \phi_{4}(L, G) \phi_{5}(J, L, S) \phi_{6}(H, G, J)
$$

$$
\begin{aligned}
& =\ldots . \sum_{I} \phi_{3}(S \mid I) \sum_{D} \phi_{2}(G, D, I) \sum_{C} \phi_{1}(D, C) \\
& \quad \text { - repeat this } \downarrow \\
& \psi_{1}^{\prime}(D) \quad \psi_{1}(D, C)
\end{aligned}
$$

$$
=\ldots \sum_{\substack{\downarrow \\ \psi_{2}^{\prime}(G, I)}}^{\downarrow} \phi_{3}(S, I) \sum_{D} \phi_{2}(G, D, I) \psi_{1}^{\prime}(D)
$$

Recap: variable elimination (VE)

- marginalize over a subset - e.g., $\quad P(J)$
- expensive to calculate (why?) $\sum_{C, D, I, G, S, L, H} P(C, D, I, G, S, L, J, H)$
- eliminate variables in some order

Recap: variable elimination (VE)

- eliminate variables in some order
- creates a chordal graph
- maximal cliques are the factors created during VE $\left(\psi_{t}\right)$

Clique-tree

- summarize the VE computation using a clique-tree

- clusters are maximal cliques (factors that are marginalized) $C_{i}=S$ cope $\left[\psi_{i}\right]$

$$
\begin{aligned}
& P(J)=\ldots . \sum_{I} P(S \mid I) \sum_{D} P(G \mid D, I) \sum_{C} P(D \mid C) \\
& \downarrow \\
& \downarrow \\
& \psi_{1}^{\prime}(D) \psi \downarrow(D, C)
\end{aligned}
$$

Clique-tree

- summarize the VE computation using a clique-tree

- clusters are maximal cliques (factors that are marginalized)

$$
C_{i}=S c o p e\left[\psi_{i}\right]
$$

- sepsets are the result of marginalization over cliques

$$
\begin{aligned}
& S_{i, j}=S \operatorname{cope}\left[\psi_{i}^{\prime}\right] \\
& S_{i, j}=C_{i} \cap C_{j}
\end{aligned}
$$

Clique-tree: properties

- family-preserving property: $\alpha(\phi)=j$
- each factor ϕ is associated with a cluster C_{j} S.t. $S c o p e[\phi] \subseteq C_{j}$

Clique-tree: properties

- family-preserving property: $\alpha(\phi)=j$
- each factor ϕ is associated with a cluster C_{j} s.t. $S c o p e[\phi] \subseteq C_{j}$
- running intersection property:
- if $X \in C_{i}, C_{j}$ then $X \in C_{k}$ for C_{k} in the path $C_{i} \rightarrow \ldots \rightarrow C_{j}$

VE as message passing

- think of VE as sending messages

calculate the product of factors in each clique

$$
\psi_{i}\left(C_{i}\right) \triangleq \prod_{\phi: \mathbf{Q}(\phi)=i} \phi
$$

send messages from the leaves towards a root:

$$
\delta_{i \rightarrow j}\left(S_{i, j}\right)=\sum_{C_{i}-S_{i, j}} \psi_{i}\left(C_{i}\right) \prod_{k \in N b_{i}-j} \delta_{k \rightarrow i}\left(S_{i, k}\right)
$$

message passing

- think of VE as sending messages

- send messages from the leaves towards a root:

$$
\begin{aligned}
\delta_{i \rightarrow j}\left(S_{i, j}\right) & =\sum_{C_{i}-S_{i, j}} \psi_{i}\left(C_{i}\right) \prod_{k \in N b_{i}-j} \delta_{k \rightarrow i}\left(S_{i, k}\right) \\
& =\sum_{\mathcal{V} \prec(i \rightarrow j)} \prod_{\phi \in \mathcal{F}_{\prec(i \rightarrow j)}} \phi
\end{aligned}
$$

- the message is the marginal from one side of the tree

message passing

- think of
- send messages from the leaves towards a root:

$$
\delta_{i \rightarrow j}\left(S_{i, j}\right) \triangleq \sum_{C_{i}-S_{i j}} \psi_{i}\left(C_{i}\right) \Pi_{k \in N b_{i}-j} \delta_{k \rightarrow i}\left(S_{i, k}\right)=\sum_{\mathcal{V}\langle i \rightarrow j)} \Pi_{\phi \in \mathcal{F}_{\langle i\langle i j)}} \phi
$$

- the belief at the root clique is $\beta_{r}\left(C_{r}\right) \triangleq \psi_{r}\left(C_{r}\right) \prod_{k \in N b_{r}} \delta_{k \rightarrow r}\left(S_{r, k}\right)$ proportional to the marginal $\beta_{r}\left(C_{r}\right) \propto \sum_{\mathbf{x}-C_{\mathrm{i}}} P(\mathbf{X})$

message passing: downward pass

- what if we continue sending messages?

- clique \mathbf{i} sends a message to clique \mathbf{j} when received messages from all the other neighbors \mathbf{k}

message passing: downward pass

- what if we continue sending messages? (from the root to leaves)

- sum-product belief propagation (BP)

$$
\begin{aligned}
& \delta_{i \rightarrow j}\left(S_{i, j}\right)=\sum_{C_{i}-S_{i, j}} \psi_{i}\left(C_{i}\right) \prod_{k \in N b_{i}-j} \delta_{k \rightarrow i}\left(S_{i, k}\right) \\
& \mu_{i, j}\left(S_{i, j}\right) \triangleq \delta_{i \rightarrow j}\left(S_{i, j}\right) \delta_{j \rightarrow i}\left(S_{i, j}\right) \\
& \beta_{i}\left(C_{i}\right) \triangleq \psi_{i}\left(C_{i}\right) \prod_{k \in N b_{i}} \delta_{k \rightarrow i}\left(S_{i, k}\right)
\end{aligned}
$$

async. message update

marginals

for any clique (not only root)

Clique-tree \& queries

What type of queries can we answer?

- marginals over subset of cliques $P(A) \quad A \subseteq C_{i}$
- updating the beliefs after new evidence $P\left(A \mid E^{(t)}=e^{(t)}\right) \quad A \subseteq C_{i}, E \subseteq C_{j}$
- multiply the (previously calibrated) beliefs $\beta\left(C_{i}\right) \mathbb{I}\left(E^{(t)}=e^{(t)}\right)$
- propagate to recalibrate

Clique-tree \& queries

What type of queries can we answer?

- marginals over subset of cliques $P(A) \quad A \subseteq C_{i}$
- updating the beliefs after new evidence $P\left(A \mid E^{(t)}=e^{(t)}\right) \quad A \subseteq C_{i}, E \subseteq C_{j}$
- multiply the (previously calibrated) beliefs $\beta\left(C_{i}\right) \mathbb{I}\left(E^{(t)}=e^{(t)}\right)$
- propagate to recalibrate
- marginals outside cliques: $\quad P(A, B) \quad A \subseteq C_{i}, B \subseteq C_{j}$
- define a super-clique that has both A, B
- a more efficient alternative?
- partition function Z

Chordal graph and clique-tree

any chordal graph gives a clique-tree

how to get a chordal graph? triangulation

- use the chordal graph from VE

- min-neighbor, min-fill ...
- or find the optimal chordal graph
- smallest tree-width
- also smallest max-clique

Chordal graph and clique-tree

Chordal graph $=$ Markov \cap Bayesian networks
from MRF to Bayes-net:

- triangulate
- build a clique-tree
- within cliques: fully connected directed edges
- between cliques: from a root to leaves

Building a clique-tree: example

input

triangulated

clique-tree

clique-tree quiz

what clique-tree to use here?
what are the sepsets?
cost of exact inference?

Summary

- VE as message passing in a clique-tree
- clique-tree: running intersection \& family preserving
- belief propagation updates:
- message update
- belief update
- types of queries
- how to build a clique-tree for exact inference

bonus slides

Clique-tree: calibration

represent P using marginals: $\frac{\prod_{i} \beta_{i}}{\prod_{i, j \in \mathcal{E}} \mu_{i, j}}=\frac{\prod_{i} \psi_{i} \prod_{k \rightarrow i} \delta_{k \rightarrow i}}{\prod_{i, j \in \mathcal{E}} \delta_{i \rightarrow j} \delta_{j \rightarrow i}}=\prod_{i} \psi_{i}=\tilde{P}$
how about about arbitrary assignments? $\beta_{i}, \mu_{i, j} \quad \forall i, j \in \mathcal{E}$
can they represent P as above?
an assignment is calibrated iff
BP produces calibrated beliefs

$$
\mu_{i, j}\left(S_{i, j}\right)=\sum_{C_{i}-S_{i, j}} \beta_{i}\left(C_{i}\right)=\sum_{C_{j}-S_{i, j}} \beta_{j}\left(C_{j}\right)
$$

for calibrated beliefs these "arbitrary assignments" have to be marginals

$$
\tilde{P}(\mathbf{X}) \propto \frac{\prod_{i}\left(C_{i}\right)}{\prod_{i, j \in \mathcal{E}} \mu_{i, j}\left(S_{i, j}\right)} \quad \Leftrightarrow \quad \beta_{i}\left(C_{i}\right) \propto P\left(C_{i}\right)
$$

BP: an alternative update

message update
$\delta_{i \rightarrow j}\left(S_{i, j}\right)=\sum_{C_{i}-S_{i, j}} \psi_{i}\left(C_{i}\right) \prod_{k \in N b_{i}-j} \delta_{k \rightarrow i}\left(S_{i, k}\right)$

calculate the beliefs in the end $\beta_{i}\left(C_{i}\right)=\psi_{i}\left(C_{i}\right) \prod_{k \in N b_{i}} \delta_{k \rightarrow i}\left(S_{i, k}\right)$
belief update
since $\delta_{i \rightarrow j}\left(S_{i, j}\right)=\frac{\sum_{c_{i}-S_{i, j}} \beta_{i}\left(C_{i}\right)}{\delta_{j \rightarrow i}\left(S_{i, j}\right)}$
we can update the beliefs instead of messages

BP: an alternative update

belief update

$$
\begin{aligned}
& \text { initialize } \beta_{i} \leftarrow \psi_{i}=\prod_{\phi: \alpha(\phi)=i} \phi, \quad \mu_{i, j} \leftarrow 1 \\
& \text { until convergence }: \\
& \qquad \begin{array}{ll}
\text { pick some }(i, j) \in \mathcal{E} & \\
\qquad \hat{\mu}_{i, j} \leftarrow \sum_{C_{i}-S_{i, j}} \beta_{i} & / / \hat{\mu}_{i, j}=\delta_{i \rightarrow j}^{\text {new }} \delta_{j \rightarrow i} \\
\beta_{j} \leftarrow \beta_{j} \frac{\hat{\mu}_{i, j}}{\mu_{i, j}} & \text { // } \frac{\hat{\mu}_{i, j}}{\mu_{i, j}}=\frac{\delta_{i \rightarrow j}^{n n w} \delta_{j \rightarrow i}}{\delta_{i \rightarrow j}^{\text {old } \delta_{j \rightarrow i}}=\frac{\delta_{i \rightarrow j}^{\text {new }}}{\delta_{i \rightarrow j}^{\text {old }}}}
\end{array}
\end{aligned}
$$

at convergence, beliefs are calibrated $\quad \sum_{C_{i}-S_{i, j}} \beta_{i}\left(C_{i}\right)=\sum_{C_{j}-S_{i, j}} \beta_{j}\left(C_{j}\right)$ and so they are \propto marginals

