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Abstract

Providing a two-dimensional parameterization of three-
dimensional tesselated surfaces is beneficial to many appli-
cations in computer graphics, finite-element surface mesh-
ing, surface reconstruction and other areas. The applicabil-
ity of the parameterization depends on how well it preserves
the surface metric structures (angles, distances, areas). For
a general surface there is no mapping which fully preserves
these structures. The distortion usually increases with the
rise in surface complexity. For highly complicated surfaces
the distortion can become so strong as to make the parame-
terization unusable for application purposes. One possible
solution is to subdivide the surface or introduce seams in a
way which will reduce the distortion.

This article presents a new method for introduction of
seams in three-dimensional tesselated surfaces. The ad-
dition of seams reduces the surface complexity and hence
reduces the metric distortion produced by the parameteri-
zation. Seams often introduce additional constraints on the
application for which the parameterization is used, hence
their length should be minimal. The new method we present
minimizes the seam length while reducing the parameteri-
zation distortion.

1. Introduction

A two-dimensional parameterization of three-
dimensional surfaces is useful for many applications.
These include texture mapping for computer generated
images [8, 18, 13], finite-element surface meshing [17, 14],
surface reconstruction [7], multiresolutional analysis[5],
generation of clothing patterns [15], and metal forming.

When the surface is represented using an analytic de-
scription, this description can often be used to provide the
parameterization. However, many computer graphics and
CAD models are represented by a triangular tessellation
and the analytic representation of the surface is often un-

available. A triangulated mesh is the “natural” description
of surfaces constructed from scattered data such as input
from laser range scanners or sampling on a regular three-
dimensional grid.

An algorithm for two-dimensional parameterization or
flattening of tessellated surfaces first constructs a two-
dimensional mesh with a similar connectivity to the three-
dimensional surface. Then, a parametric function is defined
between the two-dimensional mesh.

Multiple approaches for parameterization of tessellated
surfaces have been suggested [2, 5, 7, 14, 13, 10, 17, 16].
Most provide good results for relatively simple surfaces,
but can generate invalid parameterization for some inputs.
A few methods [7, 10, 17] guarantee that the resulting flat
mesh is valid for any legal input (where a legal input is a sur-
face which is homeomorphic to a disk with a single bound-
ary loop).

The major criteria when considering the suitability of the
parameterization for different applications is the preserva-
tion of the surface metric structures (angles, distances, ar-
eas). Angular and distance/area distortions are detrimental
to most applications which use the parameterization, since
features in two dimensions are not preserved when project-
ing them onto the original three-dimensional surface. The
best example is texture mapping, where the quality of the
texture relies directly on the metric preservation in the pa-
rameterization.

For a general triangulated surface there is no mapping
which fully preserves distances or areas [1]; neither is there
a mapping that for a faceted surface with non-zero curvature
fully preserves angles. Hence, parameterization methods
can only attempt to minimize both types of distortion. Note
that minimizing the two types of distortion independently
will provide different parameterizations and it is up to the
specific parameterization method to decide which combina-
tion of the distortions should be preferred. The distortion
depends directly on the Gaussian curvature of the surface.
A surface with zero Gaussian curvature is developable, i.e.
it has a two-dimensional parameterization with zero dis-



tortion. The Gaussian curvature and the distortion can be
reduced by cutting the surface, especially across regions
(points) of high curvature (Figure 4). This influence can
be seen directly in the formulation of many of the flattening
or parameterization methods. For example, the method of
Sheffer and de Sturler [17] (Section 4) uses a constrained
minimization formulation to obtain the flat triangulation
and each seam edge added to the surfaces reduces the num-
ber of constraints in the formulation. Cutting of surfaces,
or segmentationhas had numerous applications [5, 11, 6] in
the past. However the main purpose of these has been gen-
eration of fair sub-meshes suitable for decimation or surface
reconstruction. In the case of distortion reduction the main
concern is the generated mesh boundary shape in terms of
curvature and length. Hence these methods cannot be ap-
plied directly to this problem. Moreover, parameterization
does not require the surface to be segmented into several
parts. Seams which cut partially into the surface are often
acceptable.

Contribution
In this work we provide a method for automatic introduc-

tion of surface seams which cut through regions and points
of high curvature. At the same time, since seams modify
and extend the boundary of the domain, they often add con-
straints or adversely affect the application for which the pa-
rameterization is used. For texture mapping, for example,
they cause discontinuities in the texture across the seam.
For surface meshing they enforce conformal placement of
mesh nodes along the seam boundary, making the process
more cumbersome and often adversely affecting the mesh
quality. Hence when introducing seams two considerations
have to be taken into account: distortion reduction and min-
imization of seam length. The new method we present con-
siders both. The method first selects a set of interior mesh
nodes through which the seams will pass. The choice of the
nodes is based on curvature considerations (Section 2). Af-
ter the nodes are selected, a Minimal Spanning Tree (MST)
algorithm is applied on the graph associated with the mesh
to generate the shortest possible set of seams which will
connect the selected nodes to the boundary. This step is
described in Section 3. The first step is based on the pa-
rameterization requirement, in terms of mesh connectivity
and parameterization distortion. The second step ensures
the minimal length of the seams.

Most popular parameterization methods [5, 7, 17] re-
quire the surface to have a single boundary loop. Hence,
to parameterize a surface with multiple loops, we need to
cut it first in order to remove interior loops. The spanning
tree method introduces seams which eliminate all interior
loops based on the method definition.

As will be demonstrated in the examples given later on,
the method dramatically reduces the parameterization dis-

tortion while adding minimal length seams. It is robust and
efficient. To the author’s knowledge this is the first attempt
to introduce a fully automatic and systematic way of cut-
ting surfaces to minimize the distortion which occurs when
flattening surface.

The rest of the paper is organized as follows. The choice
of surface nodes to be added to the boundary is explained
in Section 2. Section 3 describes the spanning tree algo-
rithm used to generate the seams connecting the nodes to
the boundary. The combination of seam cutting with a tex-
ture mapping procedure is demonstrated in Section 4. Sec-
tion 5 concludes the paper and discusses the method prop-
erties and future work.

2. Node Selection

The first step of the algorithm is the selection of inte-
rior nodes which should be part of the seams. The nodes
are selected based on Gaussian curvature around each node.
The node Gaussian curvature provides a lower bound on
the local distortion during parameterization. Note that for
distortion purposes only, the curvature at the nodes is of in-
terest. The edges do not contribute to the distortion since
any surface is locally developable around each edge (Figure
1).

(a) (b)

Figure 1. Local parameterization in a plane:
surface is locally developable around an edge
(a), around a vertex it generally is not (b).

Gaussian curvature is not formally defined for non-
smooth surfaces, hence only a discrete approximation can
be computed. Approximations for computing it across a
mesh region tend to be costly [9, 12]. In this work we use an
alternative measure of curvature which is easier to compute.
The suggested measure is roughly based on the deviation of
the sum of angles around a node from360◦, i.e. on the local
deviation of the surface from a plane.

We define aregion curvatureCr of magnituder at an
interior mesh noden as follows (Figure 2).

• C0 is the ratio between the sum of face anglesαi

around the node and the sum of angles around an inte-
rior node in a planar mesh (Figure 2(a)):
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C0(n) =
∑

i αi

2π
.

• To define a curvature over a region we first define a
region radiusR as a product of the magnituder and
the length of the longest edge emanating fromn

R = r max
e=(n,m)

(‖n−m‖).

Given the radius, a sub-region of the meshMr(n) is
found such that all the nodes inMr(n) are within dis-
tanceR from n (Figure 2(c)). We then consider the
trianglestj formed by the boundary edges ofMr(n)
andn (Figure 2(d)). The curvature is computed as

Cr(n) =

∑
j τj

2π

whereτj are the angles atn of tj (Figure 2(d)). This
gives a relative curvature around a node for a given
region size.

n Rn

(a) (b)

Rn n

(c) (d)

Figure 2. Computing Cr(n). (a) Computing
C0(n) - summation of angles around a node.
(b)-(d) Computing Cr(n), r > 0. (b) The mesh
around a node and the radius R sphere. (c)
The mesh sub region Mr(n) contained by
the sphere. (d) The triangles formed by the
boundary edges of Mr(n) and n.

For r = 0 this measure is quite similar to the Gaussian
curvature approximation suggested by Calladine [3]. The

main difference is that it does not take into consideration
the area of the surrounding triangles. Hence it is scale in-
dependent, and therefore, is more appropriate as a parame-
terization distortion indicator. We use the values ofCr(n)
to select the nodes which should be added to the boundary
node set. Given user defined threshold valuesC̃0, C̃ ′0 > C̃0,
r, andC̃r, the selection is done as follows.

• ComputeC0(n) at all interior nodes.

• Set the node setS′ to include the interior mesh nodes
whereC0(n) < C̃0.

• Set the node setS′′ to include the interior mesh nodes
whereC̃0 < C0(n) < C̃ ′0.

• For each noden in S′′ computeCr(n). If Cr(n) < C̃r,
addn to S′.

This selection process gives all the nodes with very high
local curvature, and nodes with both relatively high local
and high region curvature. The values forC̃0, C̃ ′0, andC̃r

used throughout the paper were.9, .95, and.9, respectively.
The choice ofr varies throughout the examples and is spec-
ified near each example figure.

3. Generating Seams

Once the nodes are selected the shortest possible seams
which will add them to the boundary need to be computed.
To do this we consider the weighted graph(V,E)associated
with the mesh, where edge lengths correspond to arc
weightsw. To compute the shortest seams we construct
the Minimal Spanning Tree (MST) of the chosen nodes to-
gether with the boundary nodes. The construction process
is explained below.

3.1. Algorithm Steps

After the selection of a set of interior nodesS′, the
method analyzes the mesh graphM = (N, E) to generate
the seams. The main steps of the algorithm are described
below and are demonstrated in Figure 3.

• Generate a node setS containing the selected interior
nodesS′ and all the boundary nodes of the mesh (Fig-
ure 3(a)).

• Compute the shortest paths between each pair of nodes
in S (Section 3.2 (Figure 3(b)).

• Compute the Minimal Spanning Tree (MST) ofS (Fig-
ure 3(c)). AMinimal Spanning Tree (MST)of a subset
of the graph verticesS is the collection of paths that
join all vertices inS together, with the minimum pos-
sible sum of arc weights.
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• Add seams into the mesh along the MST edges.

After adding the seams, the surface can be opened up
along them during parameterization (Figure 3(d)).

a b ba

(a) (b)

ba a b

(c) (d)

Figure 3. Cutting seams in the mesh. (a)
The node set S containing the nodes a and
b and all the boundary nodes. (b) The short-
est paths from a to all other nodes in S. Only
this subset of paths is shown for clarity. (c)
The MST of S. (d) Splitting the mesh along
the seams.

3.2. Computing the Shortest Paths

In this and the next section two well-known graph theory
algorithms are applied to add the shortest possible seams to
the mesh, given the set of nodes that the seams must contain.
After the node setS containing the selected interior nodes
and the boundary nodes is computed, the shortest paths be-
tween each pair of nodes inS are computed.

1. LetT = S

2. WhileT 6= ∅
2.1 Gett ∈ T

2.2 T = T \ {t}
2.3 Compute the shortest paths fromt to all the nodes

in T

To compute the shortest path fromt to a set of nodesT ,
a modified Dijkstra’s algorithm[4] is used. It uses a prior-
ity queueQ of paths and associated path weights. The op-
erationExtractMin(Q) returns the path with the lowest
weight in the queue. The algorithm is defined as follows.

1. I = {t}
2. For eache = (t, t′)

2.1 If e on boundaryw(e) = ε,
elsew(e) = ‖e1 − e2‖

2.2 Q ← (e, w(e))

3. WhileQ 6= ∅
3.1 (P, w(P )) = ExtractMin(Q)

3.2 P = P (t, p)

3.3 If p ∈ I goto 3

3.4 I = I ∪ {p}
3.5 If p ∈ T

- T = T \ {p}
- Record P(t,p) and w(P)
- If T = ∅ terminate

3.6 For eache = (p, p′) if p′ /∈ I
Q ← (P ∪ {e}, w(P ) + w(e))

The setting of boundary edge weights toε in step2.1
is made to ensure that the boundary lengths do not affect
the choice of seam edges (since they do not influence the
final seam lengths). With the setting toε we ensure that all
boundary nodes are connected along the perimeter and then
the shortest seams to interior nodes from the boundary are
chosen.

Using a binary heap for the priority queue representation
Dijkstra’s algorithm runs inO(|E| log(|N |)) time (where
|E| is the number of edges and|N | number of vertices in
the mesh). The standard algorithm computes the paths from
a vertex to all other graph vertices. In our case only the
cost of the paths fromt to a set of verticesT is of interest,
hence the modification of the standard Dijkstra in3.5. Due
to the modification, the code will terminate earlier, but the
speedup depends on the mesh structure and the distribution
of the chosen nodes.

3.3. Minimal Spanning Tree

After finding the shortest pathsP (S) between each pair
of nodes inS we can compute the minimal spanning tree
of the nodes which will provide the seams for the surface
cutting. We use Kruskal’s algorithm [4] to compute the tree
T (S). The algorithm uses a disjoint set data structure to
maintain several disjoint sets of elements. Each set contains
the vertices in a tree of the current forest. The operation
MakeSet(v) creates a set for a single node tree containing
v. FindSet(v) returns the set that containsv. The opera-
tion Unite(v, u) combines the two trees, uniting the sets.

1. T (S) = ∅
2. For eachs ∈ S, MakeSet(s)

3. Sort the pathsP (S) by nondecreasing weight order
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4. For each pathP (s1, s2) ∈ P (S) in the order of non-
decreasing weights

4.1 If FindSet(s1) 6= FindSet(s2)
– T (S) = T (S) ∪ P (s1, s2)
– Unite(s1, s2)

Choosing an efficient implementation of the dis-
joint set data structure [4] this algorithm can run in
O(|P (S)| log(|P (S)|)). Since P (S) contains paths be-
tween every pair of nodes inS, |P (S)| = |S|2. In practice
the size of the node set|S| is close to the number of bound-
ary nodes, as only a few interior nodes are chosen in the first
step of the algorithm. The generated minimal spanning tree
contains both interior mesh edges and edges on the bound-
ary (connecting the boundary nodes which are all included
in S). To generate the seams we first remove all boundary
edges and then proceed to split the mesh, duplicating each
interior mesh edge which corresponds to an arc in the MST.

4. Seams and Texture Mapping

The algorithm described above was tested in conjunc-
tion with the parameterization method introduced by Shef-
fer and de Sturler [17, 16]. The parameterization method
is briefly described below. The parameterization was then
used to generate texture on geometric models in order to
demonstrate the effect of seams on texture quality.

4.1. Angle Based Flattening

The Angle Based Flattening (ABF) algorithm [17] is
based on the observation that a planar triangular mesh is
defined by the angles within each triangle, up to global scal-
ing, rotation or translation. Based on this observation, the
method formulates the flattening problem solely in terms of
the planar triangulation angles. The algorithm minimizes
the relative distortion of the planar angles with respect to
their counterparts in the three dimensional surface, while
satisfying a set of constraints that ensure the validity of the
flat mesh. This formulation provides a constrained min-
imization problem defined entirely in terms of flat mesh
angles; the locations of the flat mesh nodes do not play a
role. The solution of this problem provides the set of angles
which determine the flat triangulation. The ABF formu-
lation does not require the two-dimensional boundary to be
predefined and does not place any restrictions on the bound-
ary shape or the surface curvature. At the same time the so-
lution method based on this formulation is provably correct,
i.e. the minimization procedure is guaranteed to converge
to a valid solution. Sheffer and de Sturler [16] adopted
the method for use in texture mapping, by adding a post-
processing step which minimizes the distortion of lengths
in addition to angles.

4.2. Texture Mapping Examples

We demonstrated the seam generation procedure and its
effect on surface parameterization on three models of vary-
ing complexity. After generating the seams the models were
parameterized as described in [17]. The parameterization
was then used for texture mapping [16]. The quality of the
texture directly depends on the parameterization distortion.
The texture quality is also affected by seam length and lo-
cation, since texture discontinuities are generated along the
seams.

Figure 4 shows a cat model (without the planar base).
The flattening algorithm can handle the model success-
fully, but the parameterization distortion is high due to large
Gaussian curvature over the surface. As a result, the texture
distortion becomes unacceptable (Figure 4(c)). The seam
introduction method withr = 1 generates a seam from the
base to the cat’s head, adding nodes on the ear tips as the
extreme curvature points. The parameterization distortion
is significantly reduced and the new texture mapping pre-
serves lengths and angles pretty well (Figure 4 (d)-(f)). In
(Figure 4 (g)-(i)) we increase the value ofr to 2. This adds
two more nodes on the cat’s nose to the node setS′. The
resulting texture is slightly better with more even texture
pattern. However, the seams are slightly longer (with 60
edges instead of 53 as in the first example). Both runs took
less than a second each.

In Figure 5 we generate texture for a rabbit model. The
model has 898 faces. The node setS′ is generated using
r = 1 and contains 50 nodes. These include points on the
rabbit’s ears, nose, tail and feet . The final seams contain
100 edges and take about 2 seconds to generate. Figure 6
shows a model of a cow. It is the largest and most com-
plicated of the three models, with 5803 faces. The node
set for it contains98 nodes (usingr = 1) and includes such
sharp features as horns, ears, tail and hoofs. The final seams
contain 326 edges. The seam generation time increases
quite significantly due to increases in both model and node
set sizes and is close to two minutes (1:57). Such an in-
crease is to be expected as Dijkstra’s algorithm for comput-
ing the paths between each pair of nodes isO(|E| log(|N |))
(E-edges andN -nodes) and the MST algorithm is nearly
quadratic in the number of nodes inS′.

5. Conclusions

A method for automatic generation of seams in faceted
surface models was presented. The method generates seams
which reduce the distortion when parameterizing the mod-
els. At the same time it keeps the seam length minimal,
given the distortion reduction requirements. The method
had been tested successfully in conjunction with a param-
eterization scheme, and was used for texture mapping on
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 4. Texture mapping for a cat model (without the planar base). (a) The model (671 elements).
(b) Flat parameterization. (c) Generated texture. (d) The model with seams (in blue) with r = 1. (e)
Flat parameterization containing seams. (f) Surface texture. (g) The seams generated with r = 2. (h)
Flat parameterization containing the seams. (i) Surface texture ( r = 2).
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(a) (b) (c)

Figure 5. Texture mapping for a rabbit model (898 faces). (a) The model with seams (in blue). (b) Flat
parameterization. (c) Generated texture.

(a) (b) (c)

Figure 6. Texture mapping for a cow model (5803 faces) (a) The model with seams (in blue). (b) Flat
parameterization. (c) Generated texture.
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complex surface models.
There are several interesting future extensions to the

method. The first is generating seams based on visibil-
ity criteria so as to hide the seam from view, when possi-
ble. Another one is handling models with genus higher than
zero, such as the torus, by adding seams which will make
the model homeomorphic to a disk.
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