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CPSC 436D
Video Game Programming

Gameplay: StrategyGameplay: Strategy

© Alla Sheffer

FSM Example: Pac-Man Ghosts

Wander Maze

Chase Pac-Man

Return to Base

Flee Pac-Man
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Schematic examples

https://www.gamasutra.com/blogs/ChrisSimpson/20140717/2
21339/Behavior_trees_for_AI_How_they_work.php
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Strategy

• Given current state, determine BEST next move 

• Short term: best among immediate options

• Long term: what brings something closest to a goal

• How? 

• Search for path to best outcome

• Across states/state parameters
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Pathfinding

• How do I get from point A to point B?
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DFS: Depth First Search

Explore each path on the 
frontier until its end (or until a 
goal is found) before 
considering any other path.

Shaded nodes 
represent the end of 
paths on the frontier
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Breadth-first search (BFS)

• Explore all paths of 
length L on the frontier, 
before looking at path 
of length L + 1

© Alla Sheffer

When to use BFS vs. DFS?
• The search graph has cycles or is infinite

• We need the shortest path to a solution

• There are only solutions at great depth

• There are some solutions at shallow depth

• No way the search graph will fit into memory

DFS

BFS

BFS

BFS

DFS
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Search with Costs

Want to find the solution that 
minimizes cost
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Def.: The cost of a path is the 
sum of the costs of its arcs
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• Lowest-cost-first search finds the path with the 
lowest cost to a goal node

• At each stage, it selects the path with the lowest cost 
on the frontier.

• The frontier is implemented as a priority queue 
ordered by path cost.

Lowest-Cost-First Search (LCFS)

10
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Use of search

• Use search to determine next state (next state on shortest path to 
goal/best outcome)

• Measures:

• Evaluate goal/best outcome

• Evaluate distance (shortest path in what metric?) 

Problems: 

• Cost of full search (at every step) can be prohibitive

• Search in adversarial environment 

• Player will try to outsmart you
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• Blind search algorithms do not take goal into account until they reach it

• We often have estimates of  distance/cost from node n to a goal node

• Estimate = search heuristic

Heuristic Search

12
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• Best First: always choose the path on the frontier with the smallest h 
value

• Frontier = priority queue ordered by h

• Once reach goal can discard most unexplored paths…
• Why?

• Worst case: still explore all/most space

• Best case: very efficient

• Greedy: (only) expand path whose last node seems closest to the goal 

• Get solution that is locally best

Best First Search (BestFS)
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• A* search takes into account both 

• c(p) = cost of path p to current node

• h(p) = heuristic value at node p (estimated “remaining” 
path cost) 

• Let f(p) = c(p) + h(p). 

• f(p) is an estimate of the cost of a path from the start to a 
goal via p.

A* Search

c(p) h(p)

f(p)A*  always chooses the path on the frontier with the lowest 
estimated distance from the start to a goal node constrained to 
go via that path. 
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A* implementation

• 1. Initialize open, closed lists. Put starting node on open 
list.

• 2. While open list is not empty:

• Find node with smallest f on the list, call it q

• Pop q off of open list

• Find q’s “successors”, and set their parent nodes to 
q
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A* implementation
• 1. Initialize open, closed lists. Put starting node on open list.

• 2. While open list is not empty:

• Find node with smallest f on the list, call it q

• Pop q off of open list

• Find q’s “successors”, and set their parent nodes to q

• For each successor:

• If successor is the goal, done!

• g(successor) = g(q) + d(q,successor)
h(successor) = D(goal, successor)

• If successor already exists in open list with lower 
f, skip it

• If successor already exists in closed list with 
lower f, skip it

• Otherwise, add successor to open list
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A* implementation
• 1. Initialize open, closed lists. Put starting node on open list.

• 2. While open list is not empty:

• Find node with smallest f on the list, call it q

• Pop q off of open list

• Find q’s “successors”, and set their parent nodes to q

• For each successor:

• If successor is the goal, done!

• g(successor) = g(q) + d(q,successor)
h(successor) = d(goal, successor)

• If successor already exists in open list with lower f, skip it

• If successor already exists in closed list with lower f, skip it

• Otherwise, add successor to open list

• Put q on closed list
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A* search

Key idea: H is a heuristic, and not the real distance:

h(p,q) = |(p.x – q.x)| + |(p.y – q.y)| 

- Manhattan distance

h(p,q) = sqrt((p.x – q.x)^2 + (p.y – q.y)^2)

- Euclidean distance
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Min-Max Trees

• Adversarial planning in a turn-taking environment

• Algorithm seeks to maximize our success F 

• Adversary seeks to minimize F

• Key idea: at each step algorithm selects move that minimizes highest 
(estimated) value of F adversary can reach

• Assume the opponent does what looks best
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Example 
(from uliana.lecturer.pens.ac.id/Kecerdasan%20Buatan/ppt/Game%20Playing/gametrees.ppt)

We are playing X, and it is now our turn.
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Our options:

Number = position after each legal move
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Opponent options

Here we are looking at all of the opponent responses 
to the first possible move we could make.
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Opponent options

Opponent options after our second 
possibility. Not good again…
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Opponent options
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Opponent options => Our options

Now they don’t have a way to win on their next move. So 
now we have to consider our responses to 
their responses.
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Our options

We have a win for any move they make. 
Original position in purple is an X win.



Copyright: Alla Sheffer 14

© Alla Sheffer

Other options

They win again if we take our fifth move.
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Summary of the Analysis

So which move should we make? ;-)
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MinMax algorithm

• Traverse “game tree”:

– Enumerate all possible moves at each node. 

– The children of each node are the positions that result from making each 
move. A leaf is a position that is won or drawn for some side.

• Assume that we pick the best move for us, and the opponent picks the best 
move for him (causes most damage to us)

• Pick the move that maximizes the minimum amount of success for our side.
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MinMax Algorithm

• Tic-Tac-Toe: three forms of success: Win, Tie, Lose.

– If you have a move that leads to a Win make it. 

– If you have no such move, then make the move that gives the tie. 

– If not even this exists, then it doesn’t matter what you do.
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Extensions

• Challenges: In practice

• Trees too deep/large to explore

• Opponent no always makes the best choice

• Randomness

• Solution - Heuristics

– Rate nodes based on local information.

– For example, in Chess “rate” a position by examining difference in number of 
pieces 
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Heuristics in MinMax

• Strategy that will let us cut off the game tree at fixed depth (layer)

• Apply heuristic scoring to bottom layer

– instead of just Win, Loss, Tie, we have a score. 

• For “our” level of the tree we want the move that yields the node 
(position) with highest score. For a “them” level “they” want the child 
with the lowest score.
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Pseudocode

int Minimax(Board b, boolean myTurn, int depth) {
if (depth==0)

return b.Evaluate(); // Heuristic
for(each possible move i)

value[i] = Minimax(b.move(i), !myTurn, 
depth-1);

if (myTurn)
return array_max(value);

else
return array_min(value);

}

Note: we don’t use an explicit tree structure.
However, the pattern of recursive calls forms a tree on the call stack.
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Real Minimax Example

10 2 12 16 2 7 -5 -80

10 16 7 -5

10 -5

10Max

Max

Min

Min

Evaluation function applied to the leaves!



Copyright: Alla Sheffer 18

© Alla Sheffer

Pruning

10 2 12 16 2 7 -5 -80

10 16 7 -5

10 -5

10Max

Max

Min

Min
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Alpha Beta Pruning
Idea: Track “window” of expectations.

Use two variables

•  – Best score so far at a max node: increases

– At a child min node:

 Parent wants max. To affect the parent’s current , our  cannot drop below .

– If  ever gets less: 

 Stop searching further subtrees of that child. They do not matter!

•  – Best score so far at a min node: decreases

– At a child max node.  

 Parent wants min. To affect the parent’s current , our  cannot get above the parent’s .

– If  gets bigger than :

 Stop searching further subtrees of that child. They do not matter!

Start with an infinite window ( = -,  = )
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10 2 12

10 12

10

Alpha Beta Example

Max

Max

Min

Min

 =10

 = 12

 > !
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Alpha Beta Example

10 2 12 2 7

10 12 7

10 7

10Max

Max

Min

Min

 = 10

 =7

 > !



Copyright: Alla Sheffer 20

© Alla Sheffer

Pseudo Code

int AlphaBeta(Board b, boolean myTurn, int depth, int alpha, int beta) {
if (depth==0)

return b.Evaluate(); // Heuristic
if (myTurn) {

for(each possible move i && alpha < beta)
alpha  = max(alpha,AlphaBeta(b.move(i),!myTurn,depth-1,alpha,beta));

return alpha;
}
else {

for(each possible move i && alpha < beta)
beta  = min(beta,AlphaBeta(b.move(i), !myTurn, depth-1,alpha,beta));

return beta;
}

}


