
Copyright: Alla Sheffer 1

© Alla Sheffer

CPSC 436D
Video Game Programming

Gameplay: StrategyGameplay: Strategy

© Alla Sheffer

FSM Example: Pac-Man Ghosts

Wander Maze

Chase Pac-Man

Return to Base

Flee Pac-Man

P
ac-M

an
 L

o
st

P
ac-M

an
 S

een

G
h

o
st A

ttacked

Pac-Man
Eats
Power
Pellet

Copyright: Alla Sheffer 2

© Alla Sheffer

Schematic examples

https://www.gamasutra.com/blogs/ChrisSimpson/20140717/2
21339/Behavior_trees_for_AI_How_they_work.php

© Alla Sheffer

Strategy

• Given current state, determine BEST next move

• Short term: best among immediate options

• Long term: what brings something closest to a goal

• How?

• Search for path to best outcome

• Across states/state parameters

Copyright: Alla Sheffer 3

© Alla Sheffer

Pathfinding

• How do I get from point A to point B?

© Alla Sheffer

DFS: Depth First Search

Explore each path on the
frontier until its end (or until a
goal is found) before
considering any other path.

Shaded nodes
represent the end of
paths on the frontier

Copyright: Alla Sheffer 4

© Alla Sheffer

Breadth-first search (BFS)

• Explore all paths of
length L on the frontier,
before looking at path
of length L + 1

© Alla Sheffer

When to use BFS vs. DFS?
• The search graph has cycles or is infinite

• We need the shortest path to a solution

• There are only solutions at great depth

• There are some solutions at shallow depth

• No way the search graph will fit into memory

DFS

BFS

BFS

BFS

DFS

Copyright: Alla Sheffer 5

© Alla Sheffer

Search with Costs

Want to find the solution that
minimizes cost

 ),cost(,,cost
1

10 



k

i
iik nnnn 

Def.: The cost of a path is the
sum of the costs of its arcs

© Alla Sheffer

• Lowest-cost-first search finds the path with the
lowest cost to a goal node

• At each stage, it selects the path with the lowest cost
on the frontier.

• The frontier is implemented as a priority queue
ordered by path cost.

Lowest-Cost-First Search (LCFS)

10

Copyright: Alla Sheffer 6

© Alla Sheffer

Use of search

• Use search to determine next state (next state on shortest path to
goal/best outcome)

• Measures:

• Evaluate goal/best outcome

• Evaluate distance (shortest path in what metric?)

Problems:

• Cost of full search (at every step) can be prohibitive

• Search in adversarial environment

• Player will try to outsmart you

© Alla Sheffer

• Blind search algorithms do not take goal into account until they reach it

• We often have estimates of distance/cost from node n to a goal node

• Estimate = search heuristic

Heuristic Search

12

Copyright: Alla Sheffer 7

© Alla Sheffer

• Best First: always choose the path on the frontier with the smallest h
value

• Frontier = priority queue ordered by h

• Once reach goal can discard most unexplored paths…
• Why?

• Worst case: still explore all/most space

• Best case: very efficient

• Greedy: (only) expand path whose last node seems closest to the goal

• Get solution that is locally best

Best First Search (BestFS)

© Alla Sheffer

• A* search takes into account both

• c(p) = cost of path p to current node

• h(p) = heuristic value at node p (estimated “remaining”
path cost)

• Let f(p) = c(p) + h(p).

• f(p) is an estimate of the cost of a path from the start to a
goal via p.

A* Search

c(p) h(p)

f(p)A* always chooses the path on the frontier with the lowest
estimated distance from the start to a goal node constrained to
go via that path.

Copyright: Alla Sheffer 8

© Alla Sheffer

A* implementation

• 1. Initialize open, closed lists. Put starting node on open
list.

• 2. While open list is not empty:

• Find node with smallest f on the list, call it q

• Pop q off of open list

• Find q’s “successors”, and set their parent nodes to
q

© Alla Sheffer

A* implementation
• 1. Initialize open, closed lists. Put starting node on open list.

• 2. While open list is not empty:

• Find node with smallest f on the list, call it q

• Pop q off of open list

• Find q’s “successors”, and set their parent nodes to q

• For each successor:

• If successor is the goal, done!

• g(successor) = g(q) + d(q,successor)
h(successor) = D(goal, successor)

• If successor already exists in open list with lower
f, skip it

• If successor already exists in closed list with
lower f, skip it

• Otherwise, add successor to open list

Copyright: Alla Sheffer 9

© Alla Sheffer

A* implementation
• 1. Initialize open, closed lists. Put starting node on open list.

• 2. While open list is not empty:

• Find node with smallest f on the list, call it q

• Pop q off of open list

• Find q’s “successors”, and set their parent nodes to q

• For each successor:

• If successor is the goal, done!

• g(successor) = g(q) + d(q,successor)
h(successor) = d(goal, successor)

• If successor already exists in open list with lower f, skip it

• If successor already exists in closed list with lower f, skip it

• Otherwise, add successor to open list

• Put q on closed list

© Alla Sheffer

A* search

Key idea: H is a heuristic, and not the real distance:

h(p,q) = |(p.x – q.x)| + |(p.y – q.y)|

- Manhattan distance

h(p,q) = sqrt((p.x – q.x)^2 + (p.y – q.y)^2)

- Euclidean distance

Copyright: Alla Sheffer 10

© Alla Sheffer

Min-Max Trees

• Adversarial planning in a turn-taking environment

• Algorithm seeks to maximize our success F

• Adversary seeks to minimize F

• Key idea: at each step algorithm selects move that minimizes highest
(estimated) value of F adversary can reach

• Assume the opponent does what looks best

© Alla Sheffer

Example
(from uliana.lecturer.pens.ac.id/Kecerdasan%20Buatan/ppt/Game%20Playing/gametrees.ppt)

We are playing X, and it is now our turn.

Copyright: Alla Sheffer 11

© Alla Sheffer

Our options:

Number = position after each legal move

© Alla Sheffer

Opponent options

Here we are looking at all of the opponent responses
to the first possible move we could make.

Copyright: Alla Sheffer 12

© Alla Sheffer

Opponent options

Opponent options after our second
possibility. Not good again…

© Alla Sheffer

Opponent options

Copyright: Alla Sheffer 13

© Alla Sheffer

Opponent options => Our options

Now they don’t have a way to win on their next move. So
now we have to consider our responses to
their responses.

© Alla Sheffer

Our options

We have a win for any move they make.
Original position in purple is an X win.

Copyright: Alla Sheffer 14

© Alla Sheffer

Other options

They win again if we take our fifth move.

© Alla Sheffer

Summary of the Analysis

So which move should we make? ;-)

Copyright: Alla Sheffer 15

© Alla Sheffer

MinMax algorithm

• Traverse “game tree”:

– Enumerate all possible moves at each node.

– The children of each node are the positions that result from making each
move. A leaf is a position that is won or drawn for some side.

• Assume that we pick the best move for us, and the opponent picks the best
move for him (causes most damage to us)

• Pick the move that maximizes the minimum amount of success for our side.

© Alla Sheffer

MinMax Algorithm

• Tic-Tac-Toe: three forms of success: Win, Tie, Lose.

– If you have a move that leads to a Win make it.

– If you have no such move, then make the move that gives the tie.

– If not even this exists, then it doesn’t matter what you do.

Copyright: Alla Sheffer 16

© Alla Sheffer

Extensions

• Challenges: In practice

• Trees too deep/large to explore

• Opponent no always makes the best choice

• Randomness

• Solution - Heuristics

– Rate nodes based on local information.

– For example, in Chess “rate” a position by examining difference in number of
pieces

© Alla Sheffer

Heuristics in MinMax

• Strategy that will let us cut off the game tree at fixed depth (layer)

• Apply heuristic scoring to bottom layer

– instead of just Win, Loss, Tie, we have a score.

• For “our” level of the tree we want the move that yields the node
(position) with highest score. For a “them” level “they” want the child
with the lowest score.

Copyright: Alla Sheffer 17

© Alla Sheffer

Pseudocode

int Minimax(Board b, boolean myTurn, int depth) {
if (depth==0)

return b.Evaluate(); // Heuristic
for(each possible move i)

value[i] = Minimax(b.move(i), !myTurn,
depth-1);

if (myTurn)
return array_max(value);

else
return array_min(value);

}

Note: we don’t use an explicit tree structure.
However, the pattern of recursive calls forms a tree on the call stack.

© Alla Sheffer

Real Minimax Example

10 2 12 16 2 7 -5 -80

10 16 7 -5

10 -5

10Max

Max

Min

Min

Evaluation function applied to the leaves!

Copyright: Alla Sheffer 18

© Alla Sheffer

Pruning

10 2 12 16 2 7 -5 -80

10 16 7 -5

10 -5

10Max

Max

Min

Min

© Alla Sheffer

Alpha Beta Pruning
Idea: Track “window” of expectations.

Use two variables

•  – Best score so far at a max node: increases

– At a child min node:

 Parent wants max. To affect the parent’s current , our  cannot drop below .

– If  ever gets less:

 Stop searching further subtrees of that child. They do not matter!

•  – Best score so far at a min node: decreases

– At a child max node.

 Parent wants min. To affect the parent’s current , our  cannot get above the parent’s .

– If  gets bigger than :

 Stop searching further subtrees of that child. They do not matter!

Start with an infinite window ( = -,  = )

Copyright: Alla Sheffer 19

© Alla Sheffer

10 2 12

10 12

10

Alpha Beta Example

Max

Max

Min

Min

 =10

 = 12

 > !

© Alla Sheffer

Alpha Beta Example

10 2 12 2 7

10 12 7

10 7

10Max

Max

Min

Min

 = 10

 =7

 > !

Copyright: Alla Sheffer 20

© Alla Sheffer

Pseudo Code

int AlphaBeta(Board b, boolean myTurn, int depth, int alpha, int beta) {
if (depth==0)

return b.Evaluate(); // Heuristic
if (myTurn) {

for(each possible move i && alpha < beta)
alpha = max(alpha,AlphaBeta(b.move(i),!myTurn,depth-1,alpha,beta));

return alpha;
}
else {

for(each possible move i && alpha < beta)
beta = min(beta,AlphaBeta(b.move(i), !myTurn, depth-1,alpha,beta));

return beta;
}

}

