
Milestone Submission Form

Team ID:
Milestone:

Instructions
Please keep this document up to date and include a copy of it with each milestone submission. TA’s
should be able to read through this document and see the work your team has completed for the current
milestone as well as a running history of work completed over prior milestones.

Milestones are organized into tables below which include both their required features and text inputs
for their creative components (which you fill in with your selected features). There are annotated long-
form explanations for each feature, with links to additional resources if available, at the end of this
document. We further provide a table of suggested features that you may pick and choose from for each
milestones creative component. To aid in planning, each suggested feature has a classification of ‘basic’
or ‘advanced’ and a list of the background knowledge required to implement it. In general, ‘basic’
features are worth 10 points and ‘advanced’ features are worth 20 points. We highly encourage you to
work on your own custom features, beyond what has been suggested here. Important: Please discuss
the amount of points custom feature are worth with the TAs before working on them.

Fill in the table below for the current milestone, entering the initials of the author responsible for each
implemented feature to the right of the table, under ‘Author’.

Grading
Each feature you implement allots your team a specified number of points, for each milestone you must
attain 100 points to receive full marks for that milestone. Certain features are required for specific
milestones, others you can complete as as a part of the creative component of milestones. Required
features can be completed early but never late, meaning if you finish the required features for future
milestones in an earlier milestone submission, you will be credited at the earlier milestone, leaving
room for additional optional features in the future one.

You will receive full credit for features only if they are fully operational. We deduct points for sloppy,
buggy and incomplete implementations. Grading suggested features will necessarily be subjective:
more complex features or those better fitting into the overall game will be rewarded with more points.
Bonus points can be gained for features exceeding 100 points, and the grading of additional bonuses,
features, and the size of bonuses will be at the marker’s discretion.

Milestone 1

Category Task Points Author

Rendering

Textured geometry 10%

Basic 2D transformations 10%

Key-frame/state interpolation 10%

Gameplay

Keyboard/mouse control 10%

Random/coded action 5%

Well-defined game-space boundaries 5%

Correct collision processing 10%

Stability
Minimal lag

20%
No crashes, glitches, unpredictable behaviour

Creative 20%

Milestone 2

Category Task Points Author

Improved
Gameplay

Game logic response to user input 20%

Sprite sheet animation 15%

New integrated assets 10%

Basic user tutorial/help 5%

Playability 2 minutes of non-repetitive gameplay 15%

Stability

Minimal lag

15%Consistent game resolution

No crashes, glitches, unpredictable behaviour

Creative 20%

Milestone 3

Category Task Points Author

Playability 5 minutes of non-repetitive gameplay 15%

Robustness

Memory management 10%

Handle all user input 5%

Real-time gameplay 10%

Stability

Prior missed milestone features & bug fixes

20%Consistent game resolution

No crashes, glitches, unpredictable behaviour

Creative 40%

Milestone 4

Category Task Points Author

Stability
Prior missed milestone features & bug fixes

15%
No crashes, glitches, unpredictable behaviour

Playability 10 minutes of non-repetitive gameplay 15%

User Experience
Comprehensive tutorial 10%

Optimize user interaction and REPORT it 10%

Creative 50%

Suggested Features

Category Feature Group Background Knowledge

Graphics

[1] Simple rendering
effects

basic Fragment shaders/OpenGL uniforms.

[2] Parallax scrolling
backgrounds

advanced Vertex and fragment shaders,
texture mapping.

[3] Complex geometry advanced Geometry and vertex shaders.

[4] Skinned motion advanced Meshes, bones, constraints, matrix
algebra and hierarchies, UV
mapping, kinematics.

[5] Particle systems advanced Instanced rendering, shader storage
buffer objects, simple physics.

[6] 2.5(3D) lighting advanced Normal mapping, local illumination
models

[7] 2D dynamic shadows advanced Basic shadow mapping, ray-object
intersections

Physics &
Simulation

[8] Basic physics basic Basic understanding of 2D physics.

[9] Complex prescribed
motion

basic Bezier/spline/Hermite interpolation
and parametric curves.

[10] Precise collisions advanced Newton’s method, basic physics,
acceleration structures such as
bounding volume hierarchies, quad
trees, etc.

[11] Complex physical
interactions with the
environment

advanced Classic physics models, kinematics,
numerical integration.

[12] Articulated motion advanced Paramaterization, kinematics,
coordinate systems, matrix algebra
and hierarchies.

[13]Physics-based
animation

advanced Classic physics models, Euler
method or other advanced
integration methods, kinematics,
particle systems for background
effects (water/smoke).

AI

[14] Simple path finding basic Basic search algorithms (ex.
breadth-first).

[15] Advanced decision-
making

advanced Complex graph traversal and search
algorithms, goal-based AI logic
(ex. rewards, penalties...).

[16] Swarm behaviour advanced Instanced rendering, BOIDS, basic
physics.

[17] Enemy group
behaviour
Cooperative planning

advanced Behaviour/decision trees, observer
pattern, BOIDS.

[18] Cooperative
planning

advanced Behaviour trees, goal-based AI
logic (ex. rewards, penalties...),
observer pattern.

Software
Eng.

[19] Reloadability basic Serialization.

[20] External
integration

basic General coding skills.

UI & IO

[21] Camera controls basic Linear algebra for camera matrix.

[22] Mouse gestures basic General coding skills.

[23] Audio feedback basic General coding skills.

Quality &
UX

[24] Basic integrated
assets

basic Asset creation tools (e.g. Blender,
Krita, GIMP, Audacity...).

[25] Game balance basic Video games, human psychology :)

[26] Numerous
sophisticated integrated
assets

advanced Asset creation tools (e.g. Blender,
Krita, GIMP, Audacity...).

[27] Story elements basic or
advanced

Narratives, basic animation (for
cutscenes), text rendering, or text
sprites.

[1] Simple creative use of the fragment shader.. For example changing the color of a sprite over time.
The color should change based on a uniform input (e.g. change the uniform based on time, user input or
when a collission is detected).

[2] Multiple background layers (at least 3) that create a parallax effect upon camera motion.

[3] Incorporate one or more complex polygonal geometric assets. Implement an accurate and efficient
collision detection method that supports this and other moving assets (include multiple moving assets
that necessitate collision checks).

[4] Render an animated skinned mesh (for example an eel represented as a triangle mesh that slithers
around).

[5] Use the OpenGL instancing feature glDrawArraysInstanced to render hundreds of instances of the
same object more efficiently to create appealing particle effects.

[6] Create interesting shading effects, such as diffuse reflection, metallic texturing, bump/normal
mapping, specular reflections, baked/static shadows...

[7] Make lights cast dynamic shadows, when entities pass in front of a light source their shadow should
be accordingly updated and look plausible/realistic. You can use any technique as long as the result
looks good.

https://www.gamedev.net/tutorials/_/technical/graphics-programming-and-theory/dynamic-2d-
soft-shadows-r2032/

[8] Simple physical interactions, force of gravity, elastic or inelastic collisions, conservation of
momentum... For example, have a ball fall down and bounce off the floor/entities. Use a numeric
integrator such as Verlet.

[9] Use geometric splines (Hermite, Lagrange, Bezier, etc.) to implement smooth non-linear motion of
one or more assets or characters. An example of a curve controlled animation is shown at

https://docs.unity3d.com/uploads/Main/AnimationEditorBouncingCube.gif

[10] Incorporate two or more complex polygonal geometric assets that move and collide. Implement an
accurate and efficient collision detection method that supports these and other moving assets. You can
approximate all objects with convex proxy polygons.

[11] Have complex physical interactions between the entities and the environment. For example
simulate exact collisions between the player and ropes/vines that wiggle and eventually come to rest, or
let the player cut a tree and have it fall down in a realistic/plausible fashion.

[12] Implement an articulated entity, for example a robotic arm that follows the cursor and uses inverse
kinematics to figure out it;s position/geometry. Use a matrix hierarchy and correctly solve the inverse
system.

[13] Implement time stepping based physical simulation which can either serve as a background effects
(e.g. water, smoke implemented using particles) or as active game elements (throwing a ball, swinging
a rope, etc.). A subset of the game entities (main or background) should possess non-trivial physics
properties such as momentum (linear or angular) and acceleration, and act based on those.

[14] Breadth first search for path finding and logic for characters to follow a prescribed path.

[15] Advanced decision-making mechanisms based on goals (e.g., A* result used in the AI of
a character).

[16] Create a group of characters with entities of the same class influencing each others positions.
Examples:

Subnautica’s fish schools: https://eater.net/boids
BOIDS pseudocode: http://www.kfish.org/boids/pseudocode.html

[17] Have a group of enemies coordinate between them, for example have them create an organized
line to pass through a bottleneck to reach the player, have a healer enemy heal an ally when they get
wounded, have many enemies position themselves to best surround and block the player out of an
objective.

[18] Planning the action of two different characters towards a common goal that requires non-trivial
communication between the two (e.g. coordination between non-player characters and enemies towards
a joint goal).

[19] Write level descriptions (entities and their components, i.e., position, texture,) in a human-
readable text file and write a level loader. We recommend the JSON format using existing json loaders.
ECS makes it easy to add components programmatically. The game should allow for full state saving
for play reload. Users should be able to exit the game and restart at the same place they left the game,
with all environment variables reset to the state they were in at save time (unless some variable needs
to be reset to make sense in your game).

[20] Integrate one or more external tools or libraries (physical simulation (PhysX, Bullet, ODE,
etc.), EnTT ECS system, game engines, or other alternatives). Important: Make sure that the
installation works for all team members before merging to main. It was a major issue in the
past that teammates were not be able to contribute and test the program due to a different
operating system or development environment.

[21] Make the camera follow the player or move it based on mouse or keyboard input.

[22] Recognize gestures (patterns drawn with the mouse) to trigger jumps along an arc or other
dedicated action.

[23] Add audio feedback for at least three interactions in the game as well as background music with
tones reflecting the journey of the game.

[24] Create a few additional assets, such as new sprites and fully integrate them into the game, either as
background elements or as interactive entitites.

[25] Do it only for the last milestone. Make sure your game is balanced and fun to play, your game
should be beatable but should still require some level of challenge to the player.

[26] Have complex assets, such as music that changes when the player is in/out of combat, animated
meshes (e.g. gltf files), a wide variety of visually coherent sprites (i.e. same aesthetic/artistic style)...

[27] Give a compelling story to the game. Have some basic character development and interesting
events. You can either lean more on artistic creativity (e.g. interesting story/plot) or techncial merit (e.g.
complex cutscenes).

https://www.gamedev.net/tutorials/_/technical/graphics-programming-and-theory/dynamic-2d-soft-shadows-r2032/
https://www.gamedev.net/tutorials/_/technical/graphics-programming-and-theory/dynamic-2d-soft-shadows-r2032/
https://eater.net/boids
http://www.kfish.org/boids/pseudocode.html
https://docs.unity3d.com/uploads/Main/AnimationEditorBouncingCube.gif

	Text Box 1:
	Text Box 1_2:
	Text Box 2:
	Text Box 3:
	Text Box 4:
	Text Box 5:
	Text Box 6:
	Text Box 7:
	Text Box 8:
	Text Box 9:
	Text Box 10:
	Text Box 12:
	Text Box 14:
	Text Box 16:
	Text Box 18:
	Text Box 20:
	Text Box 22:
	Text Box 23:
	Text Box 24:
	Text Box 25:
	Text Box 27:
	Text Box 28:
	Text Box 32:
	Text Box 34:
	Text Box 36:
	Text Box 38:
	Text Box 40:
	Text Box 42:
	Text Box 43:
	Text Box 44:
	Text Box 45:
	Text Box 46:
	Text Box 47:
	Text Box 48:
	Text Box 51:
	Text Box 57:
	Text Box 59:
	Text Box 61:
	Text Box 63:
	Text Box 65:
	Text Box 68:
	Text Box 69:
	Text Box 70:
	Text Box 72:
	Text Box 78:
	Text Box 80:
	Text Box 82:
	Text Box 84:
	Text Box 86:
	Text Box 26:
	Text Box 49:
	Text Box 66:
	Text Box 11:
	Text Box 13:
	Text Box 15:
	Text Box 17:
	Text Box 19:
	Text Box 21:
	Text Box 31:
	Text Box 33:
	Text Box 35:
	Text Box 37:
	Text Box 39:
	Text Box 41:
	Text Box 50:
	Text Box 56:
	Text Box 58:
	Text Box 60:
	Text Box 62:
	Text Box 64:
	Text Box 71:
	Text Box 77:
	Text Box 79:
	Text Box 81:
	Text Box 83:
	Text Box 85:
	Text Box 29:
	Text Box 30:
	Text Box 67:
	Text Box 73:
	Text Box 75:
	Text Box 52:
	Text Box 54:
	Text Box 53:
	Text Box 55:
	Text Box 74:
	Text Box 76:

