
Copyright: Alla Sheffer 1

© Alla Sheffer

CPSC 436D
Video Game Programming

Basic GameplayBasic Gameplay

© Alla Sheffer

Basic gameplay

• AKA Enemy Logic

• How do enemies “choose” their actions?

Copyright: Alla Sheffer 2

© Alla Sheffer

FSM Example: Pac-Man Ghosts

© Alla Sheffer

FSM Example: Pac-Man Ghosts

Wander Maze

Chase Pac-Man

Return to Base

Flee Pac-Man

P
ac-M

an
 L

o
st

P
ac-M

an
 S

een

G
h

o
st A

ttacked

Pac-Man
Eats
Power
Pellet

Copyright: Alla Sheffer 3

© Alla Sheffer

Finite State Machines: States + Transitions

© Alla Sheffer

FSM Pseudo-Code

From http://twvideo01.ubm-us.net/o1/vault/gdc2016/Presentations/Clavet_Simon_MotionMatching.pdf

Copyright: Alla Sheffer 4

© Alla Sheffer

FSMs:

• Each frame:
• Something (the player, an enemy) does something in its state

• It checks if it needs to transition to a new state

• If so, it does so for the next iteration

• If not, it stays in the same state

• Applications
• Managing input

• Managing player state

• Simple AI for entities/objects/monsters etc.

© Alla Sheffer

FSMs: States + Transitions

From http://twvideo01.ubm-us.net/o1/vault/gdc2016/Presentations/Clavet_Simon_MotionMatching.pdf

Copyright: Alla Sheffer 5

© Alla Sheffer

FSMs: States + Transitions

From http://twvideo01.ubm-us.net/o1/vault/gdc2016/Presentations/Clavet_Simon_MotionMatching.pdf

© Alla Sheffer

FSMs: Failure to Scale

From http://twvideo01.ubm-us.net/o1/vault/gdc2016/Presentations/Clavet_Simon_MotionMatching.pdf

No way to do long-term planning
No way to ask “How do I get here
from there?”
No way to reason about long-term
goals
FSMs can get large and hard to
follow
Can’t generalize for larger games

Copyright: Alla Sheffer 6

© Alla Sheffer

Schematic examples

https://www.gamasutra.com/blogs/ChrisSimpson/20140717/2
21339/Behavior_trees_for_AI_How_they_work.php

© Alla Sheffer

Schematic examples

https://www.gamasutra.com/blogs/ChrisSimpson/20140717/2
21339/Behavior_trees_for_AI_How_they_work.php

Selector:
If unlocked,…
Or if have key,…
else

Copyright: Alla Sheffer 7

© Alla Sheffer

And more complex…
https://www.gamasutra.com/
blogs/ChrisSimpson/2014071
7/221339/Behavior_trees_for
_AI_How_they_work.php

Decorator

© Alla Sheffer

Types

Copyright: Alla Sheffer 8

© Alla Sheffer

Types

Decorator

Composite

Composite

Composite

Leaf

© Alla Sheffer

Behaviour Trees: How To Simulate Your
Dragon

Start!

Guard Treasure Get More Treasure Post Selfies To Facebook

Make thief flee!

Fly to Castle!
Is there a thief?

Treasure light enough to get home?

Steal treasure!

Take treasure home!

Condition Node

Instruction Node

Copyright: Alla Sheffer 9

© Alla Sheffer

Behaviour Trees

• Each frame:
• Visit a node

• See if any higher priority nodes now run

• If so, execute them instead

• See if my currently running node fails

• If so, return to the root of the behaviour tree! Start again!

• See if the currently running node is done

• If so, run the lower priority node in the current branch of the tree

© Alla Sheffer

Start!

Is there a thief?

No! 40 miles later

Fly to castle! Can I take it home?Steal treasure!

Success

(runs until complete)

Copyright: Alla Sheffer 10

© Alla Sheffer

Behaviour Trees: How To Simulate Your
Dragon

Start!

Guard Treasure Get More Treasure Post Selfies To Facebook

Make thief flee!

Fly to Castle!
Is there a thief?

Treasure light enough to get home?

Steal treasure!

Take treasure home!

Condition Node

Instruction Node

© Alla Sheffer

Behaviour Trees are Modular!

• Can re-use behaviours for different purposes

• Can implement a behaviour as a smaller FSM

• Can be data-driven (loaded from a file, not hard coded)

• Can easily be constructed by non-programmers

• Can be used for goal based programming

Copyright: Alla Sheffer 11

© Alla Sheffer

Behaviour Trees

• flow of decision making of an AI agent

• tree structured

• Each frame:
• Visit nodes from root to leaves

• depth-first order

• check currently running node
• succeeds or fails:
• return to parent node and evaluate its Success/Failure
• the parent may call new branches in sequence or return Success/Failure
• continues running: recursively return Running till root (usually)

© Alla Sheffer

Behaviour Tree Elements

• Leaves: commands that control AI entity
– upon tick, return: Success, Failure, or Running

• Branches: utility nodes that control tree traversal

– loop through leaves: first to last or random

– inverter: flip Failure <-> Success

– Produce command sequence best suited to situation

• Can be extremely deep

– nodes calling sub-trees of reusable functions

– libraries of behaviours chained together

Copyright: Alla Sheffer 12

© Alla Sheffer

Types

Decorator

Composite

Composite

Composite

Leaf

© Alla Sheffer

Behaviour Tree Elements

• Leaf node

• Custom function, does actual work

• Returns Running/Success/Failure

• Decorator node

• has one child

• Passes on Running/Success/Failure from
child

• may invert Success/Failure

• Composite node

• has >= 1 children

• returns ‘Running’ until children stopped
running

Copyright: Alla Sheffer 13

© Alla Sheffer

Useful Composites

• Sequence

• execute all children in order

• Success if all children succeed (= AND)

• Selector

• execute all children in order

• return Success if any child succeeded (= OR)

• Random Selectors / Sequences

• Randomized order of above composites

© Alla Sheffer

Useful Decorators

• Inverter

• Negates success/failure

• Succeeder

• always returns success

• Repeater

• Repeat child N times

• Repeat Until Fail

• Repeat until child fails

return “Success”;

?

N

Copyright: Alla Sheffer 14

© Alla Sheffer

Leaf Nodes

Functionality
• init(…)

• Called by parent to initialize

• Sets state to Running

• Not called again before returning
Success/Failure

• process()
• Called every frame/tick the node is

running

• Does internal processing, interacts with
the world

• Returns Running/Success/Failure

• Example: Walk to goal location
• Sets goal position for

path finding

• Computes shortest path

• Sets character velocity

• Returns
- success: Reached destination
- failure: No path found
- running: En route

