CPSC 436D
Video Game Programming
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Basic gameplay
AKA Enemy Logic

How do enemies “choose” their actions?
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FSM Example: Pac-Man Ghosts
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FSM Example: Pac-Man Ghosts
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Finite State Machines: States + Transitions
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FSM Pseudo-Code

(!'walking && wantToWalk)

PlayAnim(StartAnim);
walking =

(IsPlaying(StartAnim) && IsAtEndOfAnim())

PlayAnim(WalkLoopAnim) ;

(walking && !wantToWalk)

PlayAnim(StopAnim);
walking = :

From http://twvideo01.ubm-us.net/o1/vault/gdc2016/Presentations/Clavet_Simon_MotionMatching.pdf
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FSMs:

» Each frame:
Something (the player, an enemy) does something in its state
It checks if it needs to transition to a new state
If so, it does so for the next iteration
If not, it stays in the same state
« Applications
Managing input
Managing player state
Simple Al for entities/objects/monsters etc.
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FSMs: States + Transitions

From hitp://twvideo01.ubm-us.net/o1/vault/adc2016/Presentations/Clavet Simon MotionMatching.pdf ©Aa Sheffer |
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(speed > 3.0f)
PlayAnim(RunAnim) ;

(speed > 6.06f)

PlayAnim(WalkAnim) ;

PlayAnim(IdleAnim);

FSMs: States + Transitions

rom http://twvideo01.ubm-us.net/o1/vault/adc2016/Presentations/Clavet Simon MotionMatchina.pd
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FSMs: Failure to Scale

From http://twvi
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No way to do long-term planning

No way to ask “How do | get here
from there?”

No way to reason about long-term
goals

FSMs can get large and hard to
follow

Can'’t generalize for larger games
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https://www.gamasutra.com/blogs/ChrisSimpson/20140717/2
21339/Behavior_trees_for_Al_How_they work.php
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https://www.gamasutra.com/blogs/ChrisSimpson/20140717/2
21339/Behavior_trees_for_Al_How_they work.php

Selector:
If unlocked,...

Or if have key,...

else
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Decorator
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Behaviour Trees

» Each frame:
Visit a node
See if any higher priority nodes now run
If so, execute them instead
See if my currently running node fails
If so, return to the root of the behaviour tree! Start again!
See if the currently running node is done
If so, run the lower priority node in the current branch of the tree
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Start!

Is there a thief? Fly to castle!

Steal treasure!

(runs until complete)

Can | take it home2
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Behaviour Trees: How To Simulate Your L
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Behaviour Trees are Modular!

Can re-use behaviours for different purposes

Can implement a behaviour as a smaller FSM

Can be data-driven (loaded from a file, not hard coded)
Can easily be constructed by non-programmers

Can be used for goal based programming
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Behaviour Trees

flow of decision making of an Al agent

Sequence
tree structured

« Each frame: [waktooon | | secwr | [raktiomoo] | cioseooo
Visit nodes from root to leaves | o;.enmorﬁ swim\
depth-first order
check currently running node
succeeds or fails:
return to parent node and evaluate its Success/Failure

the parent may call new branches in sequence or return Success/Failure
continues running: recursively return Running till root (usually)

| Smash Door
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Behaviour Tree Elements

Leaves: commands that control Al entity
upon tick, return: Success, Failure, or Running

» Branches: utility nodes that control tree traversal
loop through leaves: first to last or random
inverter: flip Failure <-> Success
Produce command sequence best suited to situation

Can be extremely deep
nodes calling sub-trees of reusable functions
libraries of behaviours chained together
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Open (door)
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Behaviour Tree Elements
Leaf node
Custom function, does actual work Vs v

Unlock {door)

Returns Running/Success/Failure
Decorator node
has one child

Passes on Running/Success/Failure from
child

may invert Success/Failure
Composite node
has >= 1 children

returns ‘Running’ until children stopped
running
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Useful Composites

Sequence
execute all children in order
Success if all children succeed ( = AND)

Selector

execute all children in order
return Success if any child succeeded ( = OR)

Random Selectors / Sequences

Selec

tor

Randomized order of above composites [owenon | [ onmoaom | [ smmnaom |
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Useful Decorators

Inverter -
Negates success/failure ] g
Succeeder
always returns success return “Success”;
Repeater

Repeat child N times W

Repeat Until Fail

Repeat until child fails \7
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Sets state to Running

Not called again before returning
Success/Failure

» process()

Called every frame/tick the node is
running

Does internal processing, interacts with
the world

Returns Running/Success/Failure

Computes shortest path
Sets character velocity
Returns

- success: Reached destination

- failure: No path found
- running: En route
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