
Copyright: Alla Sheffer & Helge Rhodin 1

© Alla Sheffer & Helge Rhodin

CPSC 427
Video Game Programming

Game Programming Basics: Event
Driven Programming & Entity
Component System (ECS)

© Alla Sheffer & Helge Rhodin

Procedural Programming

Sequential control flow
• Program performs a sequence of tasks & terminates

Copyright: Alla Sheffer & Helge Rhodin 2

© Alla Sheffer & Helge Rhodin

Main loop not under your control
• vs. procedural

Control flow through event callbacks
• redraw the window now

• key was pressed

• mouse moved

Callback functions called from main loop when events
occur

• mouse/keyboard

Event-Driven Programming

© Alla Sheffer & Helge Rhodin

Minimal Main (openGL)

int main(int argc, char* argv[]) {

if (!world.init(..)){

return EXIT_FAILURE;

}

while (!world.is_over()) {

glfwPollEvents(); // process events

world.update(); // update game state based on events + timer

world.draw(); // render

}

world.destroy();

return EXIT_SUCCESS;

}

Copyright: Alla Sheffer & Helge Rhodin 3

© Alla Sheffer & Helge Rhodin

Update (responds to user input + timer)

1. Collision detection

2. Game AI

3. Physics

 Update positions, velocities, etc

 Resolve collisions

5

© Alla Sheffer & Helge Rhodin

Our game loop (A1-A3 Template, main.cpp)

6

Copyright: Alla Sheffer & Helge Rhodin 4

© Alla Sheffer & Helge Rhodin

openGL

• Low-level graphics API

• C Interface accessed from C++

• Shaders – graphics

– A LOT more details later

© Alla Sheffer & Helge Rhodin

Even Callbacks

Set at start – in our template in world.init()

auto key_redirect = [](GLFWwindow* wnd, int _0, int _1, int _2, int _3) {
((World*)glfwGetWindowUserPointer(wnd))->on_key(wnd, _0, _1, _2, _3); };

auto cursor_pos_redirect = [](GLFWwindow* wnd, double _0, double _1) {
((World*)glfwGetWindowUserPointer(wnd))->on_mouse_move(wnd, _0, _1); };

glfwSetKeyCallback(m_window, key_redirect);

glfwSetCursorPosCallback(m_window, cursor_pos_redirect);

Another example would be a mouse click (same format)

Copyright: Alla Sheffer & Helge Rhodin 5

© Alla Sheffer & Helge Rhodin

Callback Actions

void World::on_key(GLFWwindow*, int key, int, int action, int mod){
if (action == GLFW_RELEASE && key == GLFW_KEY_R){
 …
}
if (action == GLFW_RELEASE && (mod & GLFW_MOD_SHIFT) && key ==
GLFW_KEY_COMMA){
 …
}
void World::on_mouse_move(GLFWwindow* window, double xpos, double
ypos){
}

© Alla Sheffer & Helge Rhodin

What are Entities?

• Entities: things that exist in your game world

1

BGM

Copyright: Alla Sheffer & Helge Rhodin 6

© Alla Sheffer & Helge Rhodin

Entities in Traditional Game Programming

• Object-Oriented Programming

– Entities as objects

 Contains data, behaviors, etc.

– Entity Hierarchy: Entities extend other Entities

1

© Alla Sheffer & Helge Rhodin

Entity Hierarchy (object oriented design)

1

Copyright: Alla Sheffer & Helge Rhodin 7

© Alla Sheffer & Helge Rhodin

Issues with Object-Oriented Approach

1

What if we want Mario to
be able to be squished?

© Alla Sheffer & Helge Rhodin

Issues with Object-Oriented Approach

• Difficult to add new
behaviors

– Choice between
replicating code or

– MONSTER SIZE parent
classes

1

Both options aren’t
ideal for big
games!

Copyright: Alla Sheffer & Helge Rhodin 8

© Alla Sheffer & Helge Rhodin

Example ECS Diagram

1

Goomba is now
separated from its data
& methods

© Alla Sheffer & Helge Rhodin

Example ECS Diagram

1

Now what if we want
Mario to be able to be
squished?

Copyright: Alla Sheffer & Helge Rhodin 9

© Alla Sheffer & Helge Rhodin

Example ECS Diagram

1

We can give Mario a
Physics Component to
make him squishable.

© Alla Sheffer & Helge Rhodin

Example ECS Diagram

1

What would happen to
Mario here?

Copyright: Alla Sheffer & Helge Rhodin 10

© Alla Sheffer & Helge Rhodin

What is ECS?

• Alternative to object-oriented programming

• Data is self-contained & modular

– Similar concept to building blocks

– Entities no longer “own” data

– Entities pick & choose

1

© Alla Sheffer & Helge Rhodin

What is ECS?

• Entities actions determined only by their data

– Update loop doesn’t need references to Entities

– Systems search for Entities with right parts (data) & update

 For Mario to move he needs a position & velocity

2

Copyright: Alla Sheffer & Helge Rhodin 11

© Alla Sheffer & Helge Rhodin

What is ECS?

• Composition over hierarchy

• Entities are collections of Components

• Components contain game data

– Position, velocity, input, etc.

• Systems are collections of actions

– Render system, motion system, etc.

2

© Alla Sheffer & Helge Rhodin

Component

2

• Contains only game data

• Describes one aspect of an Entity

– ex. a trumpet Entity will likely have an audio Component

Copyright: Alla Sheffer & Helge Rhodin 12

© Alla Sheffer & Helge Rhodin

Component

2

• Typically implemented with structs.

© Alla Sheffer & Helge Rhodin

What Components to Make?

• What Components would we give to the following Entities?

Copyright: Alla Sheffer & Helge Rhodin 13

© Alla Sheffer & Helge Rhodin

Components

2

• Easy to add new Entity characteristics

– Just create the desired Component & give to Entity

How do we change our
playable hero from
Mario to Luigi?

© Alla Sheffer & Helge Rhodin

Components

2

• Empty Components can be used to tag Entities

Empty components are useful, a flag indicating an ability!

Copyright: Alla Sheffer & Helge Rhodin 14

© Alla Sheffer & Helge Rhodin

Components

2

• Empty Components can be used to tag Entities

Now Luigi can be
identified as the active
player

© Alla Sheffer & Helge Rhodin

Systems

2

• Groups of Components describe behavior/action

– ex. bounding box, position & velocity describe collisions

• Systems code behaviors/actions

• Operate on Entities with related groups of components

– Related: describe same (type of) behavior/action

– ex. render all Entities with sprite & position

• Entity behavior can be dynamic

– Add/remove components on the fly

Copyright: Alla Sheffer & Helge Rhodin 15

© Alla Sheffer & Helge Rhodin

System Example

2

• What systems might these related groups of components
describe?

© Alla Sheffer & Helge Rhodin

System Example

3

• What systems might these related groups of components
describe?

Enemy Motion System Player Motion System

Copyright: Alla Sheffer & Helge Rhodin 16

© Alla Sheffer & Helge Rhodin

System Examples

3

for(int entity : velocity_entities)
if (position_entities.has(entity))

position_components.get(entity)+= velocity_components.get(entity);

for(Velocity& velocity : velocity_components)
velocity += 9.81 * dt

Physics System

Motion System

… iterates over all components of type velocity

… iterates over all entities that have velocity and position

The physics system does not
care about entities at all!

Need to know all entities that have component X
Need to retrieve a component X from an entity

Game loop
Entity player;

if(! alive_entities.has(player)) exit();
Single boolean check

© Alla Sheffer & Helge Rhodin

ECS implementation: So how do we code this?

3

Copyright: Alla Sheffer & Helge Rhodin 17

© Alla Sheffer & Helge Rhodin

Where/How do we store components?

• Inside Entities?

3

Mario

Luigi

Goomba1

Goomba2

P
os

iti
on

V
el

oc
ity

Ju
m

ps

P
la

ye
r

S
qu

is
ha

bl
e

© Alla Sheffer & Helge Rhodin

Where/How do we store components?

• Inside Entities?

– NO!

3

position

collision

sprite

velocity

Update loop has to
access non-contiguous
memory repeatedly!

Memory Blocks

Slow memory access!

Copyright: Alla Sheffer & Helge Rhodin 18

© Alla Sheffer & Helge Rhodin

Where/How do we store components?

• Inside Systems?

– NO!

 Component may be used by different systems

3

© Alla Sheffer & Helge Rhodin

Where/How do we store components?

Where do we store our Components?

• Inside Component Managers!!
– Entity doesn’t need to know what components exist.

– Easy to add new components.

– Components are encapsulated.

• Okay, good. How?

Copyright: Alla Sheffer & Helge Rhodin 19

© Alla Sheffer & Helge Rhodin

Where/How do we store components?

• In a map (hash table)?

– NO!

3

position

collision

sprite

velocity

Update loop STILL has to
access non-contiguous
memory repeatedly!

Memory Blocks

Slow memory access!

© Alla Sheffer & Helge Rhodin

The (giant) Sparse Array (MATRIX)

3

position

collision

sprite

velocity

Memory Blocks

Copyright: Alla Sheffer & Helge Rhodin 20

© Alla Sheffer & Helge Rhodin

The (giant) Sparse Array (MATRIX)

3

Mario

Luigi

Goomba1

Goomba2

P
os

iti
on

V
el

oc
ity

Ju
m

ps

P
la

ye
r

S
qu

is
ha

bl
e

Issues?

1
2

ID

Concept: A huge data matrix of size Nr. Entities x Nr. components
Implementation: std:vector<Position>; std:vector<Velocity>

© Alla Sheffer & Helge Rhodin

Bitset / Bitmap

4

Mario

Luigi

Goomba1

Goomba2

P
os

iti
on

V
el

oc
ity

Ju
m

ps

P
la

ye
r

S
qu

is
ha

bl
e

1
2
3

4

ID B
its

et
/b

itm
ap

11110

11001

Concept: Each entity has a bitset that is true for its ‘owned’ components
Implementation: long bitset; // how many components can we support?
If(bitset & query == query) // has the entity all query components?

Copyright: Alla Sheffer & Helge Rhodin 21

© Alla Sheffer & Helge Rhodin

Key & Lock Metaphor

4

p
o

sitio
n

Unique Entity IDEntity

velo
city

sp
rite

h
ealth

p
o

sitio
n

velo
city

delta time
calculations

Motion System
Systems only operate on
Entities with required
Components

© Alla Sheffer & Helge Rhodin

The (giant) Sparse Array (MATRIX)

• Good: O(1) map from entity to component

• Bad: Large Holes

– not memory efficient; fragmentation, cache utilization is
wasted on empty space 

4

position

collision

sprite

velocity

Memory Blocks

Copyright: Alla Sheffer & Helge Rhodin 22

© Alla Sheffer & Helge Rhodin

Dense Component Vectors

How do we store our Components?

• Dense Component Vectors !

– Less fragmentation; good cache usage 

4

position

collision

sprite

velocity

Memory Blocks

© Alla Sheffer & Helge Rhodin

Dense Component Vectors

4

Mario

Luigi

Goomba1

Goomba2

P
os

iti
on

V
el

oc
ity

Ju
m

ps

P
la

ye
r

S
qu

is
ha

bl
e

1
2

ID

Concept: One array/vector per component, Implementation:
std:vector<Position>; std:vector<Velocity>

Copyright: Alla Sheffer & Helge Rhodin 23

© Alla Sheffer & Helge Rhodin

Dense Component Vectors

How do we store our Components?

• Dense Component Vectors!

– Less fragmentation; good cache usage 

– New problem: How to find out which entities have which
components, and where?

4

position

collision

sprite

velocity

Memory Blocks

© Alla Sheffer & Helge Rhodin

Dense Component Vectors

4

Mario

Luigi

Goomba1

Goomba2

P
os

iti
on

V
el

oc
ity

Ju
m

ps

P
la

ye
r

S
qu

is
ha

bl
e

1
2

ID

Concept: One array/vector per component, but how to associate?
Implementation: std:vector<Position>; std:vector<Velocity> + WHAT?

Need to:
- Find position of Goomba’s squishable

component in component mgr
- Find parent entity of components
- Find out if an object is squishable

Copyright: Alla Sheffer & Helge Rhodin 24

© Alla Sheffer & Helge Rhodin

Option 1: Hash Tables + Component Managers

4

Mario

Luigi

Goomba1

Goomba2

1 2

Hash
Table

Concept: Use a hash table to look up, for each entity, its position in dense array
Implementation: std::unordered_map<Entity,int>; std::vector<Position>

4

Position Component Manager

3 1

Hash
Table

3

Positions Dense Array

Jumps Component Manager

Jumps Dense Array

2

Hash
Table

4

Squishable Component Manager

Squishable Dense Array

© Alla Sheffer & Helge Rhodin

Option 2: Hash Tables++

4

Mario

Luigi

Goomba1

Goomba2

1 2

Hash
Table

Concept: Add reference, for each component, to parent entity
Implementation: std::vector<Entity>

4

Position Component Manager

3 1

Hash
Table

3

Positions Dense Array

Jumps Component Manager

Jumps Dense Array

2

Hash
Table

4

Squishable Component Manager

Squishable Dense Array

1 2 43
Positions To Entity Array

Copyright: Alla Sheffer & Helge Rhodin 25

© Alla Sheffer & Helge Rhodin

Map + Dense Vector (different visualization)

4

Mario

Luigi

Goomba1

Goomba2

P
os

iti
on

V
el

oc
ity

Ju
m

ps

P
la

ye
r

S
qu

is
ha

bl
e

1
2

ID

2
3

© Alla Sheffer & Helge Rhodin

How Do I…

• Find all my entity’s components?

– Have registry of component managers; check all hash
tables

– O(n) in # of component managers

• Find if an entity has a component and where?

– Check hash table; returns index or NULL

– O(1) look up on average

• Find if a component has a parent entity?

– Just look it up. O(1)

Copyright: Alla Sheffer & Helge Rhodin 26

© Alla Sheffer & Helge Rhodin

Cache is Key

5

• Each Component type has a statically allocated array

• Minimizes costly cache misses

– Keeps components we access around the same time close
to each other

position

collision

sprite

velocity

Memory Blocks

© Alla Sheffer & Helge Rhodin

Faster iteration via entity and component array

5

�������	����
���
	�����
�	�����	������	�����	��
������������	����
���������	����
��������	�����	���������

���������	����
������	��	����
����
	�����
�	����
������	��	����
������� ���	�����	���������

�������
	������!�
	����"�
	�����
�	�����	����#	����
	����������	�����	��
$����
	����
���
	�����
�	�����	�%
	���&�����	�����	��
��������������������	����
������	�'�(�	����
��������	�����	���������
���������

���������������	���%�����&����	��
	�����
�������	���%
	���&�����	�����	��

Accessing the velocity map (�	��
	�����
����) is an unnecessary indirection

We can access the velocity components in linear fashion

Copyright: Alla Sheffer & Helge Rhodin 27

© Alla Sheffer & Helge Rhodin

How Does a System Find its Entities?

5

Extension: Entity Manager

• Each system has a list of entity IDs it is interested in

• Systems register their bitsets/bitmaps with the Entity Manager

• Whenever an Entity is added…

– Evaluate which systems are interested & update their ID lists

© Alla Sheffer & Helge Rhodin

Entity Summary

5

• Each Entity is typically just a unique identifier to its
components

• Store Entities in a big static array in the Entity Manager

– Monitor removed entities

ID 2

Entities

ID 9

Copyright: Alla Sheffer & Helge Rhodin 28

© Alla Sheffer & Helge Rhodin

Memory & ECS

Where do we store our Components?

• Inside a registry!

– Systems don’t own components

– One big array for each Component type

– Takes advantage of modular architecture of ECS

5

YES!

© Alla Sheffer & Helge Rhodin

Cache is Key

5

• When we “delete” an entity we must delete corresponding
components to.

• Different approaches to this,

– Fill deleted components in arrays with the last entities data

 Extra care must be taken when managing indices

– Mark spots in arrays as rewritable

 Big systems will suffer from poor memory management

Copyright: Alla Sheffer & Helge Rhodin 29

© Alla Sheffer & Helge Rhodin

Entity Component Systems: Benefits

5

• Complexity

– Game code tends to grow exponentially

– Complexity of ECS architecture does not grow with it

– Easy to maintain

• Customization

– Games have a lot of dynamic operations

– Add/remove components to change Entity behavior

– ECS is highly modular

• Can be very memory efficient!

