CPSC 427 A2: Game Al and Collision Processing
Assignment

Due: 23:59 PM, Friday March 4, 2022

1 Introduction

The goal of this assignment is to introduce you to basic collision handling and game Al.
You will extend the chicken game you made for Assignment 1 with additional features. The
assignment includes both a required (80%) and a free-form component (20%). The goal of
the latter is to let you experiment with computer graphics and have fun.

2 Template

You should use the same template as for Assignment 1 along with your own Assignment
1 code as a starting point. You will find comments throughout the files to help guide you
in the right direction and entry points for this assignment are marked with TODO A2. The
following classes will be of particular interest.

Collision. You will write additional functions in the PhysicsSystem class to test for
chicken collisions with walls, making the collisions exact and efficient as discussed below.
Detected collisions will be handled in the WorldSystem.

AI. To make your bugs (and potentially eagles) smarter you will change their motion
update mechanism with the AISystem (in ai.h and ai.cpp).

Debug. The createLine() in world init.cpp will be useful for drawing debug informa-
tion on the screen.

3 Required Work (80%)

1. Getting Started (10%):



CPSC 427

(a)

Programming Assignment 2 (Individual)

Commit all your edits from Assignment 1 to git, such that you can track and
potentially revert changes. We recommend pushing your code to a private git
repository, e.g., on GitHub or UBC servers to prevent loss of code upon potential
malfunction of your machine.

Keep a separate copy of your Assignment 1 executable and dlls, to be able to
showcase your Al solutions to TAs on request.

Play the a2_reference.mp4 video to get a sense of what a possible assignment
solution should look like. Note the differences in the character behavior compared
to Al.

Reduce the speed and frequency of bugs and eagles to make the new features you
will be implementing easier to see.

2. Collisions (40%, prereq: Collision Det. lecture):

(a)

Spawn the bugs with randomized velocity in a right-left direction and make them
bounce off the walls, flipping their direction along the wall normal.

Hint: The motion.scale variable contains the size of the sprite. Make sure
the bugs still collide and bounce against the walls while avoiding the chicken.
Implementations where the bugs become jittery/buggy will not receive
full marks.

Prevent the chicken from penetrating the left and right walls. Use exact collision
computation for the chicken (test for collisions between the rotated chicken mesh
and the walls). Use the chicken’s bounding box(es) to make the computation
reasonably efficient.

Note, the mesh vertices of an entity player (our chicken) can be retrieved with
registry.meshPtrs.get(player_entity). The player’s global position and scale
also depends on the position, orientation, and scale properties stored in the Motion
struct associated with the same entity. Inspect how the draw call and the vertex
shader renders meshes for inspiration.

Implement a debug mode toggle to visualize the impact of collisions as shown in
the example video. You will need to write your own functions to show the bound-
ing boxes of bugs and the exact vertex positions of the chicken. This will make
it easier to identify those colliding with the walls. The PhysicsSystem: :step()
function provides a starting point for visualizing the position and size of all mov-
ing objects with lines. You can combine lines to more complicated overlays or
write your own primitives. The debug display is triggered with the d key.

3. Game AT (30%, prereq: Al lecture)

(a)

Make the bugs smarter by enabling them to avoid the chicken. The bugs should
avoid the chicken by staying at least some minimum distance € away from it. After
an encounter, the bugs should follow the shortest path to the wall opposite its
starting point. The goal path should be updated every X frames. The frequency
X with which these paths are recomputed should be user-controllable.

Page 2 of 77



CPSC 427 Programming Assignment 2 (Individual)

(b) Extend the debug mode from the previous part to visualize the computed paths
of each bug on the screen and the spatial data structures (constructed bounding
boxes, circles, ...) used to implement this feature. When in debug mode, freeze the
view for a few milliseconds after every Al update to make the debug visualizations
visible for longer than a single frame. Make sure the freeze happens after the draw
call such that the AI debug information is displayed.

Hint: If mysterious bounding boxes appear, consider that the generated debug
lines are implemented as entities with a motion component.

4 Creative Part(20%)

The required code changes described so far will let you earn up to 80% of the grade. To
earn the remaining 20% you will need to make the game more appealing by implementing
one advanced feature. You may also gain bonus points when exceeding our expectations.
Marks for the advanced features will be granted only if both they and all basic
features are fully implemented and functional. Advanced feature suggestions:

1. Make the bugs even smarter by accounting not just for the chicken’s current position,
but also for its anticipated motion trajectory. Similar to the previous part, add an
advanced debug mode toggle that visualizes bugs paths and the spatial data structures
used.

2. Avoid chicken/wall penetrations by accurately testing for expected collision position
and time instead of existing penetrations. Like before, visualize the expected collision
locations with an advanced debug mode toggle.

3. Replace the randomly spawned eagles with a single smart eagle that chases the chicken,
while at the same time avoiding the bugs. The eagles path should be updated ev-
ery X frames. The frequency X with which the path is recomputed should be user-
controllable. Visualize the spatial data structures used to enable this feature and the
eagles path with an advanced debug mode toggle.

Use your imagination to make other additions than the ones listed above, however, please
make sure you focus on tasks involving collision, geometry, Al, and debugging knowledge.

To support both basic and advanced visualization and control features, you need to add
a toggle option where the user switches between the two modes by pushing the ‘a’
and ‘b’ keys (‘a’ for advanced mode and ‘b’ for basic mode; either at startup or during the
game).

Document all the features you add in the README.md file you submit with
the assignment. Advice: implement and test all the required tasks first before starting
the free-form part.

To get full credit you should add at least one of the advanced features above and make it fully
functional and free from bugs. The grading of additional bonuses, features, and the size of

Page 3 of 77



CPSC 427 Programming Assignment 2 (Individual)

bonuses will be at the marker’s discretion. A bonus is given for solutions that go beyond the
suggestions listed above. Multiple partially implemented features will not receive
full credit.

5

Hand-in Instructions

. Create a folder called “a2”. As for A1, copy all your source files and the CMakeLists.txt

as present in the template to this folder (same folder structure; the TA should be able to
run CMake and compile). Double check that you include the shader folder. Excluded
all generated files, such as /build, .vs, /out and the example videos! These would
consume a lot of space on our server.

. In addition, create a README.md file (Markdown language as used on GitHub) that

includes your name, CWL, student number, and any information you would like to
pass on to the marker.

. The assignment should be handed in with the exact command handin c¢s-427 a2 on

a department machine (use SSH to do this remotely).

This will handin your entire a2 directory tree by making a copy of your a2 directory,
and deleting all subdirectories. If you want to know more about this handin command,
use: man handin. You can also use the web interface on your myCS page to upload
the assignment.

Recall, do not publish your solution on github or any other place. Neither

during the course nor after; both is considered cheating.

Page 4 of 77



