
3/3/2018

1

© Edoardo A. Dominici

CPSC 436D

Hands-on OpenGL

© Edoardo A. Dominici

Let’s start from resources

• Reside in GPU memory 

• Standard lifecycle (glGen* glBind* glDelete*)

• Require to be bound to be used glBind* (State-machine OpenGL)

• Different types:

- Buffers
- Textures (& Samplers)
- Shaders
- Framebuffers
- ..



3/3/2018

2

© Edoardo A. Dominici

Geometry

• Explicit representation as a set of vertices organized in primitives

• Vertices and indices are contained in Buffers

• Submitted through Vertex Array Objects (VAO)

• VAOs are containers for:

- Vertex Data (VBOs)
- Index Data (IBOs)
- Format (glVertexAttribPointer)

© Edoardo A. Dominici

Geometry: Example



3/3/2018

3

© Edoardo A. Dominici

Geometry: Example

© Edoardo A. Dominici

Textures & Samplers

• Conceptually similar to 2D (or 3D) buffers

• Used(sampled) by Shader Samplers

• Filtering options set by the application

• Binding done through Texture Units

• Sampler(Shader): Bound to texture units using glUniform1i()

• Textures(App): Bound to to texture units using glActiveTexture()



3/3/2018

4

© Edoardo A. Dominici

Textures & Samplers: Example

© Edoardo A. Dominici

Textures: Example (Modern 4.2+)



3/3/2018

5

© Edoardo A. Dominici

Shaders

• Custom code which runs on the GPU at different stages

• Requires compilation and linking

• Linked into a single Program (Vertex Shader + .. + Pixel Shader)

• Standard lifecycle glGenShaders() glDeleteShaders()

© Edoardo A. Dominici

Shaders: Example (A1)



3/3/2018

6

© Edoardo A. Dominici

Shaders - GLSL

• Each stage is expected to produce a certain output:

– Vertex Shader Output: Vertex clip-space position
– Fragment Shader Output: Pixel color

• Input data comes from:

– Attributes: Geometry or previous stage’s output
– Uniforms: Variables, Arrays, Textures, ..

• Extensive built-in library

• Stages have to have matching input/outputs

© Edoardo A. Dominici

Shaders - GLSL: Example



3/3/2018

7

© Edoardo A. Dominici

Framebuffers

• The output of the rendering pipeline is written to Texture(s)

• Framebuffers are containers for such Textures

• They allow for two types of attachment

• Color(s): Fragment shader outputs
• Depth/Stencil: Depth buffer

• Framebuffer 0 (default) writes to the window’s buffer

• Contained Textures can be reused in later stages (Render to Texture)

© Edoardo A. Dominici

Framebuffers: Example



3/3/2018

8

© Edoardo A. Dominici

Blending

• Controls how pixel color is blended into the FBO’s Color Attachment

• Control on factors and operation of the equation

• RGB and Alpha are controllabe separately

© Edoardo A. Dominici

Blending: Example Presets

• Additive Blending

• Alpha Blending



3/3/2018

9

© Edoardo A. Dominici

A few examples

• Sprite Sheets
• Render to Texture
• Particle Systems
• Post-processing Effects: Bloom

© Edoardo A. Dominici

Sprite Sheets

• Compact (and fast) approach for 2D animations

• Every frame only a region of the original Texture is rendered

• Texture Coordinates are updated as clock ticks

• Does not require dynamic VBOs



3/3/2018

10

© Edoardo A. Dominici

Sprite Sheets: Example

© Edoardo A. Dominici

Render To Texture

• Building block of any multipass pipeline
• Just putting two concepts together..

• - First Pass: Pixel colors are written to the FBO’s Color Attachment
• - Second Pass: The same Texture can be bound and used by Samplers



3/3/2018

11

© Edoardo A. Dominici

• (Physics-based) simulation of tiny individual particles

• Comp.osed of one or more Emitters

• Particles are usually rendered as Textured Quads, but any geometry can 
be used

• Requires lots of tweaking to look right (good)

• Minimum requirements:

– “Some” Scalability
– Smart rendering
– Correct blending

Basic Particle System

© Edoardo A. Dominici

Basic Particle System: Example



3/3/2018

12

© Edoardo A. Dominici

Basic Particle System: Example

© Edoardo A. Dominici

Basic Particle System: Rendering

• On Load:

-Create a VBO with as many entries as the maximum number of particles:
-Vertex Attributes: Position, Texcoord, (Index), ..

• On Render:

-Bind Texture(s) used by the emitter
-Update Uniforms (Scale, Color, ..):

■ Option: Update material for every particle
■ Option: Single buffer for all particle materials

-glDrawElements(GL_TRIANGLES, 6 * num_alive_particles, ..)



3/3/2018

13

© Edoardo A. Dominici

Post-processing: Bloom

• Fullscreen Effect to highlight bright areas of the picture

• Post-processing: Operates on Images after the scene has been rendered

• High level overview:

• 1. Render scene to texture
• 2. Extract bright regions by thresholding
• 3. Gaussian blur pass on the bright regions
• 4. Combine original texture and highlights texture with additive blending

© Edoardo A. Dominici

Post-processing: Bloom

BlurThreshold

Sum



3/3/2018

14

© Edoardo A. Dominici

Post-processing: Bloom


