
3/14/2018

1

WHO’S THIS GUY?

I’m Craig I studied at UBC (for a long time)

Computer Graphics focus Now I’m a Rendering 
Programmer



3/14/2018

2

Down to Business

• Mix of breadth and depth
• Please interact and ask questions!



3/14/2018

3

Noticeable Differences from Uni to Industry

• (Their) Expectations
• People!
• Priorities / Balance
• Scope, Scale, Complexity

General Expectations

• (Your) Expectations
• You probably won’t understand the whole code base
• You probably won’t understand the code base of your domain 

specialization
• You might not even understand the code you yourself have written!

• Kidding.
• Kinda.

• It takes a long time to become an expert (I’m not one)



3/14/2018

4

General Expectations

• Specialization Heavy
• Animation
• Rendering
• AI
• Systems
• UI
• Gameplay
• Audio
• Physics
• Online
• Quality Engineering

General Expectations

• Yet quite cross-disciplinary
• Collaboration

• Both programmers and non-programmers
• Project needs -> multiple “hats”



3/14/2018

5

General Expectations

• Working with a game engine
• Engine team vs Game team

Programming

• Some general tips:
• Don’t “overengineer”
• Be creative!

• How can you model the phenomenon you’re trying to simulate?
• How can you fake it?

• Leverage your team!
• University learning matters a lot!

• Not always directly



3/14/2018

6

Programming

• OK, so what do you actually do at work, then?
• Ping pong, board games, and Frisbee mostly /s
• I read, maintain, and write performance-minded code

Programming

• Read:
• Peer and Personal Review
• Understand it before you change it



3/14/2018

7

Programming

• Maintain:
• Game engines have a lot of code. A lot. A lot of it is very old
• Requirements change.
• Code / API’s you depend on change
• Gremlins
• You will fix broken code
• Tools!

Programming

• Write:
• Similar to school, but different
• Different “doneness”
• Different objectives and priorities

• How might this be used in the future?
• How much memory does this use?
• How long does it take? (ms, µs, ns)
• Where is my time best spent?

• Tools!



3/14/2018

8

Tools

• The basics:
• Visual Studio (Sorry Apple users (not sorry))
• Source Control (Perforce is standard, some Git)

• The not-so-basics:
• Profiling and Debugging tools

• MS / Sony Proprietary
• Nvidia, AMD, Intel tools
• Homebrew tools
• RenderDoc

RenderDoc



3/14/2018

9

PIX

Cool Stuff

• Data Driven Design:
• My team strives to put as much as possible into data – why?



3/14/2018

10

Cool Stuff

• Data Driven Design:
• Things can get a little hairy

Cool Stuff

• Composition instead of Inheritance



3/14/2018

11

Cool Stuff

• Composition instead of Inheritance

Cool Stuff

• Separation of simulation and presentation
• Keeps renderers out of game code and vice versa
• Enables easier parallelization
• Crucial for things like Replays



3/14/2018

12

Cool Stuff

• Frostbite’s FrameGraph Rendering Framework
• Graphics programming can be complicated

• EA invested a lot of effort to simplify

• A GPU pass is just a small program
• Allocate some state / memory
• Define some parameters
• Pass them into a routine (shader)
• Get an output, pass along to the next pass

Cool Stuff

• Frostbite’s FrameGraph Rendering Framework
• In the old system, we programmed close to the core rendering API

• Cumbersome, error prone
• Framegraph builds a graph of the frame:

• Nodes are Passes and Resources
• Edges are inputs / outputs
• Does this before any GPU work has been dispatched
• Uses graph to schedule work efficiently



3/14/2018

13

Pass declaration with C++ lambdas

FrameGraphResource addMyPass(FrameGraph& frameGraph, 
FrameGraphResource input, FrameGraphMutableResource output)

{
struct PassData
{

FrameGraphResource input;
FrameGraphMutableResource output;

};

auto& renderPass = frameGraph.addCallbackPass<PassData>(“MyRenderPass",
[&](RenderPassBuilder& builder, PassData& data)
{

// Declare all resource accesses during setup phase
data.input = builder.read(input);
data.output = builder.useRenderTarget(output).targetTextures[0];

}, 
[=](const PassData& data, const RenderPassResources& resources, IRenderContext* renderContext)
{

// Render stuff during execution phase
drawTexture2d(renderContext, resources.getTexture(data.input));

});

return renderPass.output;
}

Setup

Execute
(deferred)

Resources

Graph of a Battlefield 4 frame

Typically see few hundred passes and resources



3/14/2018

14

Frame Graph example

Gbuffer pass

Depth Buffer

Depth pass

Gbuffer 1

Gbuffer 2
Lighting buffer

Post

Backbuffer

Gbuffer 3

Depth Buffer

Present

Lighting

Render operations and resources for the entire 
frame expressed as a directed acyclic graph

Cool Stuff

• Frostbite’s FrameGraph Rendering Framework
• Why bother?

• Simple API
• Prune unused passes
• Transient memory
• Future – data driven?



3/14/2018

15

Future?

• Cloud
• AI / Machine Learning
• Streaming

Interviews (last slide)

• Not about “getting the right answer”
• We want to see how you:

• Think / problem-solve
• Communicate

• Keep your chin up
• Know something you’ve done inside and out

and talk about it!



3/14/2018

16

Fin

Thanks!
Q&A

cpeters@ea.com https://www.ea.com/careers

Fin

Campus Recruiter:
Brenna MacLean

brmaclean@ea.com
(mention req # in email)

cpeters@ea.com https://www.ea.com/careers


