CPSC 436D
Video Game Programming

z :Z'\ Dungeons of Dredmor
VT 7 Do
- CONQUEST
= OF THE
2.

~a Wiza

¢

1

\ Bt a Y
V= LN o

s

acs

A e]

© Alla Sheffer

Strategy

Given current state, determine BEST next move
Short term: best among immediate options
Long term: what brings something closest to a goal

How?
Search behavior tree for path to best outcome

© Alla Sheffer

Copyright: Alla Sheffer

Explore each path on the
frontier until its end (or until a
goal is found) before
considering any other path.

DFS: Depth First Search

Shaded nodes
represent the end of
paths on the frontier

© Alla Sheffer

+ Explore all paths of
length | on the frontier,
before looking at path
of length | +1

Breadth-first search (BFS)

e
/S OO O RO R
S dnenen

O

9§ R0

© Alla Sheffer

Copyright: Alla Sheffer

When to use BFS vs. DFS?

The search graph has cycles or is infinite

BFS
We need the shortest path to a solution

BFS
There are only solutions at great depth

DFS
There are some solutions at shallow depth

BFS

No way the search graph will fit into memory
DFS

© Alla Sheffer

Search with Costs

Def.: The cost of a path is the
sum of the costs of its arcs

cost((no Ko, n, >) = Zk: cost(<ni71 ., >)

Want to find the solution that
minimizes cost

© Alla Sheffer

Copyright: Alla Sheffer

Lowest-Cost-First Search (LCFS)

* Lowest-cost-first search finds the path with the
lowest cost to a goal node

+ At each stage, it selects the path with the lowest cost
on the frontier.

* The frontier is implemented as a priority queue
ordered by path cost.

© Alla Sheffer

UBC

Use of search

Use search to determine next state (next state on shortest path to
goal/best outcome)

Measures:
Evaluate goal/best outcome
Evaluate distance (shortest path in what metric?)

Problems:
Cost of full search (at every step) can be prohibitive
Search in adversarial environment
Player will try to outsmart you

© Alla Sheffer

Copyright: Alla Sheffer

Heuristic Search

+ Blind search algorithms do not take into account
the goal until they are at a goal node.

» Often there is extra knowledge that can be used
to guide the search:

- an estimate of the distance/cost from node n
to a goal node.

* This estimate is called a search heuristic.

© Alla Sheffer

UBC

Best First Search (BestFS) &

* Ildea: always choose the path on the frontier with the
smallest h value.

» BestFS treats the frontier as a priority queue
ordered by h.

* Greedy approach: expand path whose last node
seems closest to the goal - chose the solution that
is locally the best.

© Alla Sheffer

Copyright: Alla Sheffer

Pathfinding

* How do | get from point A to point B?

© Alla Sheffer

A* Search

» A* search takes into account both
» the cost of the path p to a node c(p)

+ the heuristic value of that path h(p) (i.e. the h value of
the node n at the end of p)

* Letf(p) = c(p) + h(p).
« f(p) is an estimate of the cost of a path from the start

to a goal via p. actual estimate
start — n —> goal
c(p) h(p)

A* always chooses the path on the frontier with the lowest
estimated distance from the start to a goal node constrained to
go via that path.

© Alla Sheffer

Copyright: Alla Sheffer

A* implementation

* 1. Initialize open, closed lists. Put starting node on open
list.

+ 2. While open list is not empty:
* Find node with smallest f on the list, call it q
* Pop q off of open list
* Find g’s “successors”, and set their parent nodes to
q

© Alla Sheffer

A* implementation

1. Initialize open, closed lists. Put starting node on open list.
2. While open list is not empty:
* Find node with smallest f on the list, call it q
Pop q off of open list
Find g’s “successors”, and set their parent nodes to q

* For each successor:
* If successor is the goal, done!

* g(successor) = g(q) + d(q,successor)
h(successor) = D(goal, successor)

+ If successor already exists in open list with lower
f, skip it

» If successor already exists in closed list with
lower f, skip it

* Otherwise, add successor to open list

© Alla Sheffer

Copyright: Alla Sheffer

A* implementation

« 1. Initialize open, closed lists. Put starting node on open list.
¢ 2. While open list is not empty:
* Find node with smallest f on the list, call it q
* Pop q off of open list
* Find g’s “successors”, and set their parent nodes to q
* For each successor:
* If successor is the goal, done!

* d(successor) = g(q) + d(q,successor)
h(successor) = d(goal, successor)

* If successor already exists in open list with lower f, skip it
* If successor already exists in closed list with lower f, skip it
* Otherwise, add successor to open list

* Put g on closed list

© Alla Sheffer

A* search

Key idea: D is a heuristic, and not the real distance:
D(p,q) = |(p-x - q.x)| + |(p.y — q.y)|
- Manhattan distance
D(p,q) = sqrt((p.x — q.x)*2 + (p.y — q.y)"2)
- Euclidean distance

© Alla Sheffer

Copyright: Alla Sheffer

Min-Max Trees

Adversarial planning in a turn-taking environment
Algorithm seeks to maximize our success F
Adversary seeks to minimize F

Key idea: at each step algorithm selects move that minimizes highest
(estimated) value of F adversary can reach

Assume the opponent does what looks best

© Alla Sheffer

We are playing X, and it is now our turn.

© Alla Sheffer

Copyright: Alla Sheffer

Our options:

X

e S G
3 4 s

Number = position after each legal move

© Alla Sheffer

Opponent options

+E
¥ FE %= EFE
—
iﬁlk o

O WINS

Here we are looking at all of the opponent responses
to the first possible move we could make.

UBC

© Alla Sheffer

Copyright: Alla Sheffer

10

Opponent options after our second
possibility. Not good again...

Copyright: Alla Sheffer

11

Opponent options => Our options

O
X
% [¢
X0 ol x o .,
X X X %
> > 5 [E R
[#] 8] 0 .
%K X 0
[¢] X X0

Now they don’t have a way to win on their next move. So
now we have to consider our responses to
their responses.

© Alla Sheffer

Our options d

i [¢

L S
ﬁ%xd%%s%#/;%

ﬁi##&?;ﬁ

X WINS

We have a win for any move they make.
Original position in purple is an X win.

UBC

© Alla Sheffer

Copyright: Alla Sheffer

12

4

&= B o & I
e ————— 7

|
Owins

They win again if we take our fifth move.

eeeeeeeeee

4
iéﬂzﬁi;&

666 6

So which move should we make? ;-)

]

eeeeeeeeee

Copyright: Alla Sheffer

MinMax algorithm

Traverse “game tree”:
Enumerate all possible moves at each node.

The children of each node are the positions that result from making each
move. A leaf is a position that is won or drawn for some side.

Assume that we pick the best move for us, and the opponent picks the best
move for him (causes most damage to us)

Pick the move that maximizes the minimum amount of success for our side.

© Alla Sheffer

MinMax Algorithm

Tic-Tac-Toe: three forms of success: Win, Tie, Lose.
If you have a move that leads to a Win make it.
If you have no such move, then make the move that gives the tie.
If not even this exists, then it doesn’t matter what you do.

© Alla Sheffer

Copyright: Alla Sheffer

14

Extensions

Challenges: In practice
Trees too deep/large to explore
Opponent no always makes the best choice
Randomness
Solution - Heuristics
Rate nodes based on local information.

For example, in Chess “rate” a position by examining difference in number of
pieces

© Alla Sheffer

Heuristics in MinMax

Strategy that will let us cut off the game tree at fixed depth (layer)
Apply heuristic scoring to bottom layer
iInstead of just Win, Loss, Tie, we have a score.

For “our” level of the tree we want the move that yields the node

(position) with highest score. For a “them” level “they” want the child
with the lowest score.

© Alla Sheffer

Copyright: Alla Sheffer

15

Pseudocode

int Minimax(Board b, boolean myTurn, int depth) {
if (depth==0)
return b.Evaluate(); // Heuristic
for (each possible move i)
value[i] = Minimax(b.move (i), !myTurn,
depth-1) ;
if (myTurn)
return array max(value) ;
else
return array min(value) ;

Note: we don’t use an explicit tree structure.
However, the pattern of recursive calls forms a tree on the call stack.

© Alla Sheffer

Real Minimax Example

Max

Evaluation function applied to the leaves!

C
=2
)

i
3H

)

&
\

© Alla Sheffer

Copyright: Alla Sheffer

16

© Alla Sheffer

' Parent wants max. To affect the parent’s current o, our B cannot drop below a.

— If Bever gets less:
» Stop searching further subtrees of that child. They do not matter!
* [- Best score so far at a min node: decreases
— At a child max node.
> Parent wants min. To affect the parent’s current 8, our a cannot get above the parent's f.
— If & gets bigger than S

* Stop searching further subtrees of that child. They do not matter!

Start wiith an inffinite window (a = -, =)

© Alla Sheffer

Copyright: Alla Sheffer

17

Max

10

a=12

© Alla Sheffer

Max

© Alla Sheffer

Copyright: Alla Sheffer

18

for (each possible move i && alpha < beta)

return alpha;
}
else {
for (each possible move i && alpha < beta)
beta = min(beta,AlphaBeta(b.move (i),
return beta;

ImyTurn,

alpha = max(alpha,AlphaBeta(b.move (i), !myTurn,depth-1,alpha,beta));

depth-1,alpha,beta)) ;

© Alla Sheffer

Copyright: Alla Sheffer

19

