Faster Quasi-Newton Methods for Linear Composition Problems Betty Shea, Mark Schmidt

Linear composition problems

- An objective in the form f(x) = F(Ax)where f is the composition of linear map Ax and F
- Includes many common objectives

$$f(x) = \sum_{i=1}^{m} \log(1 + \exp(-y_i x^{\mathsf{T}} a_i))$$
(Logistic f(x))
$$f(x) = \sum_{i=1}^{m} \max\{0, 1 - y_i x^{\mathsf{T}} a_i\} + \frac{\lambda}{2} ||x||^2$$
(SVM)
$$f(x) = ||Ax - y||^2$$
(Least sq

<u>Quasi-Newton methods</u>

- Approximates Newton's direction by satisfying the secant equation $B_{k+1}s_k = y_k.$ where $s_k \triangleq x_{k+1} - x_k$, $y_k \triangleq \nabla f(x_{k+1}) - \nabla f(x_k)$ and B_k is positive definite
- BFGS performs a rank 2 update of $_{B_{\mu}}$

$$B_{k+1} = B_k - \frac{B_k s_k s_k^{\mathsf{T}} B_k}{s_k^{\mathsf{T}} B_k s_k} + \frac{y_k y_k^{\mathsf{T}}}{y_k^{\mathsf{T}} s_k}$$

A limited memory version of BFGS (I-BFGS) stores only a small number of vector pairs s_k and y_k

Wolfe conditions

- Popular inexact step size methods: Armijo, Wolfe, or Goldstein
- Some quasi-Newton methods (incl. BFGS but not I-BFGS) with step sizes satisfying Wolfe conditions have local super-linear convergence
- Wolfe conditions for subspace search

$$f(x_k + P_k \alpha_k) \le f(x_k) + c_1 \nabla f(x_k)^{\mathsf{T}}(P_k \alpha_k)$$
 (sufficiently)

$$\nabla f(x_k + P_k \alpha_k)^{\mathsf{T}}(P_k \alpha_k) \ge c_2 \nabla f(x_k)^{\mathsf{T}}(P_k \alpha_k)$$

with parameters $c_1 \in (0, \frac{1}{2})$ and $c_2 \in (c_1, 1)$

University of British Columbia

ec multiplications	Count
$A^\intercal abla F$, $A abla f$	2
ve	2
ve	2
we and Ap_2	3

$$AP_k\alpha_k) = f(v_k + P'_k\alpha_k)$$

Experiments

Comparing four methods on a logistic regression objective

sido	Method	$f(x_*)$	Time (sec)	Outer Iters	Inner Iters	Mat-Vec
	GD-SO	2.516832407	21.7	250	21,791	7,423
	I-BFGS-Wolfe-default	75.74420322	85.1	250	1,375	4,054
	1-BFGS-Wolfe-optimized	0.001548940	3.2	130	805	262
	1-BFGS-SO	0.00000017	2.7	57	2,777	1,729
spam	Method	$f(x_*)$	Time (sec)	Outer Iters	Inner Iters	Mat-Vec
spam	Method GD-SO	$f(x_*)$ 0.030161545	Time (sec) 40.6	Outer Iters 150	Inner Iters 6,695	Mat-Vec 4,791
spam	Method GD-SO I-BFGS-Wolfe-default	$f(x_*)$ 0.030161545 1176.191233	Time (sec) 40.6 205.1	Outer Iters 150 150	Inner Iters 6,695 969	Mat-Vec 4,791 2,814
spam	Method GD-SO I-BFGS-Wolfe-default I-BFGS-Wolfe-optimized	$f(x_*)$ 0.030161545 1176.191233 0.000003176	Time (sec) 40.6 205.1 47.0	Outer Iters 150 150 130	Inner Iters 6,695 969 829	Mat-Vec 4,791 2,814 262

Table 2: Binary classification of the *sido* and *spam* datasets.

<u>Takeaways</u>

- (we chose Barzilai-Borwein as the submethod)

Key References

[nar2005] Guy Narkiss and Michael Zibulevsky. (2005). Sequential subspace optimization method for large-scale unconstrained problems. *Technical report, Technion – Israel Institute of Technology.* compute calcul canada **[sch2005]** Mark Schmidt. (2005). MinFunc: Unconstrained differentiable multivariate optimization in Matlab. URL: https://www.cs.ubc.ca/~schmidtm/Software/minFunc.html.

Figure 1: Binary classification of the sido and spam datasets. Left plot shows accuracy by number of iterations and right plot shows accuracy by time taken in seconds.

Compared to I-BFGS and Wolfe, our method finds a solution that is >5 times more accurate in roughly half the time

- Details such as method used to solve the subproblem matter