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Linear composition problems

- An objective in the form  f(x) = F{Ax)
where [ is the composition of linear map Ax and F

TL,DR

-BFGS with Wolfe conditions is widely used in practice

-or linear composition problems, adding a momentum term may
ead to finding a more accurate solution in less time

- We set step sizes set with inexact subspace optimization

- Includes many common objectives
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f(x) =Y log(1+exp(—yxTa;)) (Loglstic regression)
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fix) = [lAx —y]3 (Least squares) - Uses d > 1 search directions
- Conceptually, one primary direction, many secondary directions
- Primary direction from popular methods

Quasi_NeWtOn methods - Secondary directions add favorable properties to method

- For linear composition problems, efficient in number of
- Approximates Newton's direction by satisfying the secant equation matrix-vector multiplications (Table 1)
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- BFGS performs a rank 2 update of 1; Line search, e.g. Armijo, Wolfe as above 2
g Plane search with momentum direction as above 2
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Table 1: Number of matrix-vector multiplications per iteration of I-BFGS or GD for objectives of

- A limited memory version of BFGS (I-BFGS) stores only a small , » P
the form f(x) = F(Az) and second direction ps

number of vector pairs s and ;.

- Store directions as columns of matrix P. On kth iteration
Thil = Tk + Phovg

. where v is a vector of step sizes

Wolte conditions - Inexact SO is efficient for linear composition problems

Popular inexact step size methods: Armijo, Wolfe, or Goldstein flars1) = F(A(zp + Peog)) = F(Axg + APeoy) = f(vr + Prag)

Some guasi-Newton methods (incl. BFGS but not [-BFGS) with step where P = AF; is stored and reused
sizes satistying Wolfe conditions have local super-linear convergence

Wolfe conditions for subspace search

flag + Proay) < flag) + ey Vo) T(Peog) (sufficient decrease)
Vflxp + Prog )T Peo) = eV flag) T Prog) (curvature) PraCtlcal ISSUES

Initial step size choice and extrapolating to next trial step size
Sub-method to use and subproblem accuracy

with parameters e € (0,3) and e € (e, 1)

www.github.com/sheaws/minFuncSO

Experiments

Comparing four methods on a logistic regression objective

Hiam *pEM

Figure 1: Binary classification of the sido and spam datasets. Left plot shows accuracy by number
of iterations and right plot shows accuracy by time taken in seconds.

sido Method flz.) Time (sec) Outer Iters Inner Iters Mat-Vec
GD-S80 2.516832407  21.7 250 21,791 7,423
I-BFGS-Wolfe-default 75.74420322 851 250 1,375 4,054
I-BFGS-Wolfe-optimized 0.001548940 3.2 130 205 262
I-BFGS-50 0.000000017 2.7 57 2777 1.729

spam  Method flz.) Time (sec) Owuter Iters Inner Iters Mat-Vec
GD-50 0.030161545 40.6 150 6,695 4,791
I-BFGS-Wolfe-default 1176.191233  205.1 150 069 2,814
I-BFGS-Wolfe-optimized 0.000003176  47.0 130 829 262
I-BFGS-50 0.000000549  27.8 61 1,973 1.675

Table 2: Binary classification of the sido and spam datasets.

Takeaways

- Compared to |-BFGS and Wolfe, our method finds a solution
that is >5 times more accurate in roughly half the time

- Details such as method used to solve the subproblem matter
(we chose Barzilai-Borwein as the submethoq)

Key References

[nar2005] Guy Narkiss and Michael Zibulevsky. (2005). Sequential subspace optimization method for large-scale unconstrained problems.
Technical report, Technion — Israel Institute of Technology.

[sch2005] Mark Schmidt. (2005). MinFunc: Unconstrained differentiable multivariate optimization in Matlab. comgute caICl(;l
URL: https://www.cs.ubc.ca/~schmidtm/Software/minFunc.htmi. Canada [Canada

THE UNIVERSITY OF
OF BRITISH COLUMBIA



