OPT2021: 13th Annual Workshop on Optimization for Machine Learning

Faster Quasi-Newton Methods for Linear Composition Problems

Betty Shea SHEAWS @CS.UBC.CA
Mark Schmidt SCHMIDTM @ CS.UBC.CA
University of British Columbia, Canada

Abstract

The limited memory version of BFGS (I-BFGS) is widely used for large-scale optimization prob-
lems despite having limited theoretical justification. In practice, I-BFGS tends to find solutions
significantly faster than other methods with known convergence rates. Similarly, methods that use
line searches outperform those that use constant stepsizes. Theory, however, usually shows the
same worst-case complexity for both stepsize approaches. In this paper, we propose a practical
modification to 1-BFGS for linear composition problems. Our method combines I-BFGS with a
momentum direction using efficient subspace optimization (SO). We extend the Wolfe conditions
from one- to multi-dimension and experimentally compare our method to standard 1-BFGS and to
another SO method that is known to be efficient.

Keywords: subspace optimization, quasi-Newton, Wolfe conditions

1. Introduction

Quasi-Newton methods are known to work well in practice but do not have good theoretical guar-
antees. Until recently, BFGS [2, 6, 7, 24] and its limited memory version (I-BFGS [12]) are not
known to converge meaningfully faster than standard gradient descent (GD). Rodomanov and Nes-
terov [20, 21, 22] showed recently that classical quasi-Newton methods have explicit local super-
linear convergence rates. Kovalev et al. [9] showed that a randomized version of BFGS has local
linear convergence for self-concordant functions and superlinear convergence with high probability
for smooth and strongly convex functions. Fast-BFGS, a parallelizable version that combines BFGS
with SO over a dynamic subspace, is shown to converge at least as fast as BFGS despite both lower
storage requirements and lower per iteration cost [11]. Yet, despite these latest theoretical advances,
standard BFGS and 1-BFGS are popular mostly as a result of their practical importance.

Similarly, convergence analysis of iterative methods generally make the assumption that step-
sizes are set exactly, or that a constant stepsize is used. Exact stepsizes, however, do not exist and
linesearches generally outperform constant stepsizes. Furthermore, subspace optimization (SO),
in other words setting stepsizes for more than one search direction, is relatively unexplored. The-
ory exist for SO but generally assumes that the search can be solved exactly. As in the case of a
linesearch, this assumption is never satisfied in practice. In light of this, we explore practical con-
siderations of inexact SO and extend Wolfe conditions to more than one dimension. We apply this
to a method that combines a I-BFGS search direction with momentum. The inspiration comes from
a known property of a subset of quasi-Newton methods that includes BFGS. When using a stepsize
satisfying the Wolfe conditions, these methods exhibit local superlinear convergence [19]. Because
we apply our technique to high-dimension datasets, we consider 1-BFGS instead of BFGS. We find

© B. Shea & M. Schmidt.

FASTER QUASI-NEWTON METHODS FOR LINEAR COMPOSITION PROBLEMS

that despite not having the same theoretical guarantees as BFGS, 1-BFGS with SO performs very
efficiently in practice.

1.1. Notation

A linear composition problem has an objective in the form
f(z) = F(Az) e))

where A € R™*" is the feature matrix. The objective f is the composition of a linear map Ax with
another function F'. This is an important class of models in machine learning that include support
vector machines (SVMs) and (binary or multiclass) logistic regression.

In this paper, we consider problems involving unconstrained minimization on a differentiable
function f, or mingcrn f (). We look at methods that arrive at a solution iteratively. Most iterative
methods, including standard 1-BFGS implementation, use a single direction to arrive at their next
iterate. Instead, we assume that the method could use d directions. On the kth update,

Tpy1 = Tg + Prog)

where P, € R™*? contains d search directions as columns and o, € R are non-negative stepsizes,
or weights, for each of the directions. We denote the ith search direction as Py ; and refer to the
first column P, ; as the primary direction. We also assume that there is a vector of stepsizes o, that
satisfy

(Pkak)TVf(l’k) <0 3)

The intuition is that the average direction Pjay, is a descent direction. Assumption (3) is guar-
anteed if we include a gradient direction or a quasi-Newton direction with a positive definite By, as
one of the columns of Pj. If negative stepsizes are allowed, we can relax (3) to

(Prok)™V f(zr) # 0

In the case where a method uses a single search direction, or d = 1, Py is a column vector, o
is a scalar and equation (2) reduces to the familiar form

Tgy1 = T + ap by

When the SO subproblem at the kth iteration is solved inexactly, we start with some initial estimate
of the stepsize that we denote ag. We denote the differences in iterates as s = Tpt1 — Tk = Prog
and the differences in gradients as y, = V f(zp11) — V£ (zp).

1.2. Quasi-Newton methods

Quasi-Newton methods use a search direction Py = —(By) 'V f(z)) where positive definite

matrix By, € R™ "™ approximates the Hessian V2 f(x;,) through satisfying the secant equation
Bit15k = Yk 4)

There are many variants of quasi-Newton methods and they differ in the way they update B;,. BFGS

is a popular variant that uses a rank 2 update of B}, in the form

BispsiBr yry;

Byi1 = By —
st Bisk, YiSk

FASTER QUASI-NEWTON METHODS FOR LINEAR COMPOSITION PROBLEMS

I-BFGS reduces the storage requirements of By, by storing instead a small number ¢ < n of vector
pairs, si and yy, that approximate Bj. These pairs are commonly referred to as corrections.

1.3. Momentum direction

In this paper, we focus on the case where there are two search directions, or d = 2, and where the
second direction, P 2, is the momentum direction. In other words, the second search direction is
the difference between the current and previous iterates, or Py o = &) — Tp—1 = Sp—1 = Pr_103—1.
There are many theoretical reasons for using momentum as a secondary direction [13, 18].

For linear composition problems, adding a momentum search direction does not increase the
per iteration complexity and thus, is also useful from a practical point of view. After calculating
the first candidate step size, any subsequent trial step size does not require any new matrix-vector
multiplication. This is explained by equations (5) and (6) in sections 2.1 and 2.2 below.

1.4. Contribution

While inexpensive linesearches have been shown to work well with coordinate descent [17], this
has not been adapted to quasi-Newton methods. For linear composition problems (1), SO has
been shown to work well with truncated-Newton, GD and SVMs through a method called SESOP
[14, 15, 25] but have not been used with quasi-Newton methods. Furthermore, our method uses
inexact SO to set the weights (stepsizes) and is efficient for linear composition objectives. We show
experimentally that our method performs better than both standard I-BFGS and SESOP. As far as
we know, this paper is also the first to address practical issues around SO such as initialization and
the choice of methods used to solve the SO subproblem.

2. Efficient stepsize searches

In large-scale applications that involve linear composition problems, the matrix A in equation (1)
could be large. If F' is a relatively simple calculation, then matrix-vector multiplications Av, for
different vectors v, could be the bottleneck of the optimization problem. Thus, we want to minimize
the number of Av operations we perform. For typical iterative methods, we might calculate two
quantities at every iteration: the objective value f(z) and the gradient V f(x). The structure of
linear composition problems allow us to minimize the number of matrix-vector multiplications for
each of the three quantities.

2.1. Linesearch

Consider the case where the next iterate is determined along a single search direction Py, 1 = py. At
each iteration, given py, the function value at the next iterate

f(@py1) = F(A(zy + arpr)) = F(Azg + o Apr) = f(or + cwpl,) (5)

where the values vy, = Axy, and pj, = Apy, are vectors that can be stored and reused. Thus,
the function value of f(xj41) could be calculated with only two matrix-vector multiplications and
several calls to f for many «ay, values. In other words, after the first iteration, every subsequent
iteration of the linesearch requires only a scalar-vector multiplication rather than a matrix-vector
multiplication. This trick is widely used for coordinate descent but have not been used previously
for quasi-Newton methods.

FASTER QUASI-NEWTON METHODS FOR LINEAR COMPOSITION PROBLEMS

Step size selection Mat-vec multiplications Count
Fixed 1/L Vf=ATVF,K6 AVf 2
Line search, e.g. Armijo, Wolfe as above 2
Plane search with momentum direction as above 2
Plane search with generic direction as above and Apo 3

Table 1: Number of matrix-vector multiplications per iteration of 1-BFGS or GD for objectives of
the form f(x) = F(Ax) and second direction ps in the case of a plane search. There
is an additional matrix-vector multiplication at the first iteration for Axg. Subsequent
calculations of Axj do not require matrix-vector multiplications using (5).

2.2. Subspace search

Linesearches are used everywhere in practice but SO is less commonly employed due to cost. Never-
theless, SO has also been shown to be efficient for objectives that are compositions of an expensive
linear map and a cheaper non-linear function by Narkiss and Zibulevsky [14]. The authors also
showed optimal O(1/k?) convergence rates on convex objectives that include the current gradient
and weighted previous gradients as search directions. The convergence properties, however, rely on
being able to solve the SO subproblem exactly.

Analogous to equation (5), when d > 1, inexact SO is also efficient because

f(karl) =F (A (xk + Pkozk)) = F(Aa:k + APkOék) = f(vk + P,éak) (6)

where P| = AP}, is also stored and reused. For a P, with d generic directions, computing APy,
requires d matrix-vector multiplications. Thus, going from a line search to a two-dimensional plane
search would result in one additional matrix-vector multiplication. Adding the most recent momen-
tum direction, however, is a special case where there are no additional cost. Calculating AP is the
same as calculating Az, and A(xy — xx—1). If we store Azy_; from the previous iteration, we can
perform a two-dimensional subspace search for the same cost as a one-dimensional linesearch. This
observation is illustrated in Table 1 using GD as the primary direction.

2.2.1. MULTI-DIMENSION WOLFE CONDITIONS

The Wolfe conditions are a popular method for performing an inexact linesearch. Here, we directly
extend the Wolfe conditions from one- to multi-dimension. This is given by the sufficient decrease
(or Armijo) condition

f(xp + Prag) < f(og) + a1V f(zp)T(Prog) (7
and the curvature condition
Vf(l‘]g + Pkak)T(PkCtk) > CQVf(l‘k)T(PkOék) (8)

where ¢1 € (0, 3) and ¢ € (c1, 1) are constants. A similar equation to (7) was previously used in
Conn et al. [4].

FASTER QUASI-NEWTON METHODS FOR LINEAR COMPOSITION PROBLEMS

Compared to the one-dimension version, the conditions on the next iterate is now a function of
the average direction Pyay, instead of a single direction p. The underlying intuition remains the
same. Equation (7) ensures that the next iterate improves on the objective. Equation (8) ensures
that the magnitude of the directional derivative cannot be too large and thus the new iterate is an
approximate stationary point along the average direction.

Given a positive definite estimate of the Hessian By, =~ V? f(z}), quasi-Newton methods satisfy
the secant equation (4). This requires that By,1 maps s to yx and is satisfied when y,zsk > 0.
For strongly convex functions, this condition is automatically satisfied. For nonconvex function, the
curvature inequality in the Wolfe conditions guarantee that this is satisfied. This property is retained
in the multi-dimension version (8) if assumption (3) is satisfied. For details, see Appendix A.

2.3. Practical SO issues

The performance of inexact stepsize search methods rely greatly on practical issues. While these
issues have largely been explored in the case of a linesearch (for example, see chapter 3 of Nocedal
and Wright [16]), there are fewer guidelines in the case of SO.

2.3.1. INITIALIZATION
We discuss two ways to set the initial trial stepsize at every iteration.

Newton step One of the conditions for local superlinear convergence of quasi-Newton methods is
to always initialize the trial stepsize to 1. For example, if the primary direction is BFGS, we should
set ag = [1 0 ... 0] T. Because its iterates do not converge to Newton iterates, there is little
theoretical reason to use Newton step initialization for I-BFGS. Yet Newton step initialization works
well for I-BFGS in practice and is often the default initialization method in optimization code.

Linesearch initialization Another way to set ag is to first run a linesearch on the primary direc-
tion to obtain a satisfying stepsize 5. We can then set ag = [ﬂ 0 ... 0] T, If the primary di-
rection comes from a method that is known to converge with a linesearch, this initialization method
guarantees convergence of the overall method.

2.3.2. CHOICE OF SO METHOD

Experimentally, we found that using Barzilai-Borwein (BB) [1] as the method to solve the SO
subproblem works significantly better than using GD. BB is known to have fast convergence for
quadratic functions.

3. Experiments

We compared our modified I-BFGS method (1BFGS—-SO0) against three different benchmarks: (a)
standard 1-BFGS using Wolfe conditions (LBFGS-W-def), (b) I-BFGS with a linesearch opti-
mized for linear composition problems (1BFGS-W-opt) and (c) a method that combines GD with
a momentum term using subspace optimization that is optimized for linear composition problems
(GD-S0).

The optimization software developed for the experiments is inspired by minFunc [23]. The
code for these experiments could be found in the minFuncSO repository.! Our main experiments

1. https://github.com/sheaws/minFuncsSO.

https://github.com/sheaws/minFuncSO

FASTER QUASI-NEWTON METHODS FOR LINEAR COMPOSITION PROBLEMS

sido sido

optimality gap
aptmaity gap

taratians total tima {sac)

spam spam

optimality gap
optimality oan

Figure 1: Binary classification of the sido and spam datasets. Left plot shows accuracy by number
of iterations and right plot shows accuracy by time taken in seconds.

are run on two real datasets sido and spam. The sido dataset comes from the Causality Workbench
website [8] and contains 12,678 datapoints and 4,932 variables. The spam dataset was prepared
by Carbonetto [3] using the TREC 2005 corpus [5] and contains 92,189 datapoints and 823,470
variables. The task is binary classification using logistic regression. 1BFGS—SO and GD—-SO both
use one additional direction that is the most recent momentum term and the SO is solved using BB.
We plot the results of our experiments in figure 1.

Our experiments suggest that, in the case of logistic regression on linear composition problems,
there are significant gains from adding the most recent momentum term as a secondary search
direction and using SO. In figure 1, our method (in purple) performs better than other methods
measured in terms of accuracy, number of iterations and time taken.

Finally, we performed additional experiments on 49 binary classification datasets made available
through Dataset Downloader [10]. Preliminary results suggest that SO may work particularly well
in the overparameterized setting. On the other hand, it generally does not hurt to go from a line
search to a subspace search. Further details of the experiments are given in Appendix B.

4. Discussion

In this paper, we showed that for linear composition problems, our modified version of I-BFGS
may find more accurate solutions in less time. In particular, this method seem to perform better in
the overparameterized setting. More analytical work needs to be done to determine the conditions
where it helps to go from a line search to a subspace search.

Beyond linear composition problems, there are other important problems commonly found in
machine learning that could also benefit from this modified version of I-BFGS. These problems fall
under a class of problems known as multilinear composition problems, which have optimization
objectives that are multilinear maps. This broad category includes familiar problems such as matrix

FASTER QUASI-NEWTON METHODS FOR LINEAR COMPOSITION PROBLEMS

completion and factorization problems and optimizing the log-determinant of a matrix. It also
encompasses the linear composition problem explored in this paper.

References

[1] Jonathan Barzilai and Jonathan M. Borwein. Two-point step size gradient methods. IMA
Journal of Numerical Analysis, 8:141-148, 1988.

[2] C.G. Broyden. Quasi-newton methods and their application to function minimisation. Mathe-
matics of Computation, 21(99):368-381, 1967.

[3] Peter Carbonetto. New Probabilistic Inference Algorithms that Harness the Strengths of Vari-
ational and Monte Carlo Methods. PhD thesis, University of British Columbia., 2009.

[4] A.R. Conn, Nick Gould, A. Sartenaer, and Ph. L. Toint. On iterated-subspace minimization
methods for nonlinear optimization. AMS-IMS-SIAM, pages 50-78, 2018.

[5] Gordon V. Cormack and Thomas R. Lynam. Spam Corpus Creation for TREC, 2005. URL
https://plg.uwaterloo.ca/~gvcormac/treccorpus/.

[6] R. Fletcher. A new approach to variable metric algorithms. The Computer Journal, 13(3):
317-323, 1970.

[7] Donald Goldfarb. A family of variable-metric methods derived by variational means. Mathe-
matics of Computation, 24(109):23-26, 1970.

[8] Isabelle Guyon. Sido: A pharmacology dataset. 2008. URL http://www.causality.
inf.ethz.ch/data/SIDO.html.

[9] Dmitry Kovalev, Robert M. Gower, Peter Richtarik, and Alexander Rogozin. Fast linear con-
vergence of randomized bfgs. 2021. URL https://arxiv.org/pdf/2002.11337.
pdft.

[10] Frederik Kunstner. Dataset downloader. 2021. URL https://github.com/
fKunstner/dataset-downloader.

[11] Zheng Li, Shi Shu, and Jian-Ping Zhang. A dynamic subspace based bfgs method for large
scale optimization. 2020. URL https://arxiv.org/abs/2001.07335.

[12] Dong C. Liu and Jorge Nocedal. On the limited memory bfgs method for large scale optimiza-
tion. Mathematical Programming, 45:503-528, 1989.

[13] A. Miele and J.W. Cantrell. Study on a memory gradient method for the minimization of
functions. Journal of Optimization Theory and Applications, 3(6), 1969.

[14] Guy Narkiss and Michael Zibulevsky. Sequential subspace optimization method for large-
scale unconstrained problems. Technical report, Technion - Israel Institute of Technology,
2005.

[15] Guy Narkiss and Michael Zibulevsky. Support vector machine via sequential subspace opti-
mization. Technical report, Technion - Israel Institute of Technology, 2005.

https://plg.uwaterloo.ca/~gvcormac/treccorpus/
http://www.causality.inf.ethz.ch/data/SIDO.html
http://www.causality.inf.ethz.ch/data/SIDO.html
https://arxiv.org/pdf/2002.11337.pdf
https://arxiv.org/pdf/2002.11337.pdf
https://github.com/fKunstner/dataset-downloader
https://github.com/fKunstner/dataset-downloader
https://arxiv.org/abs/2001.07335

FASTER QUASI-NEWTON METHODS FOR LINEAR COMPOSITION PROBLEMS

[16] Jorge Nocedal and Stephen J. Wright. Numerical Optimization, 2nd Ed. Springer, 2006.

[17] Julie Nutini, Issam Laradji, and Mark Schmidt. Let’s make block coordinate descent go fast:
Faster greedy rules, message-passing, active-set complexity, and superlinear convergence.
2017. URL https://arxiv.org/abs/1712.08859.

[18] B. T. Polyak. Some methods of speeding up the convergence of iteration methods. USSR
Computational Mathematics and Mathematical Physics, 4(5):1-17, 1964.

[19] M.J.D. Powell. On the convergence of the variable metric algorithm. IMA Journal of Applied
Mathematics, 7(1):21-36, 1971.

[20] Anton Rodomanov and Yurii Nesterov. Greedy quasi-newton methods with explicit superlin-
ear convergence. SIAM J. Optim, 31(1):785-811, 2021.

[21] Anton Rodomanov and Yurii Nesterov. Rates of superlinear convergence for classical quasi-
newton methods. Mathematical Programming, 2021.

[22] Anton Rodomanov and Yurii Nesterov. New reesults on superlinear convergence of classical
quasi-newton methods. Journal of Optimization Theory and Applications, 188:744-769, 2021.

[23] Mark Schmidt. minfunc: unconstrained differentiable multivariate optimization in matlab.
2005. URL https://www.cs.ubc.ca/~schmidtm/Software/minFunc.html.

[24] D.F. Shanno. Conditioning of quasi-newton methods for function minimization. Mathematics
of Computation, 24(111):647-656, 1970.

[25] Michael Zibulevsky. Sesop-tn: Combining sequential subspace optimization with truncated
newton method. 2008. URL https://ie.technion.ac.il/~mcib/sesoptn_
paperl.pdf.

https://arxiv.org/abs/1712.08859
https://www.cs.ubc.ca/~schmidtm/Software/minFunc.html
https://ie.technion.ac.il/~mcib/sesoptn_paper1.pdf
https://ie.technion.ac.il/~mcib/sesoptn_paper1.pdf

FASTER QUASI-NEWTON METHODS FOR LINEAR COMPOSITION PROBLEMS

Appendix A. Multi-dimension Wolfe and the secant equation

The Wolfe conditions guarantee that the secant equation is satisfied. In other words, for By to map
the change in iterates s, to the change in gradients yy, it must be the case that y/ s, > 0. Here we
show that multi-dimension Wolfe retains this property.

From equation (8)

Vf(@k1) (Prar) = 2V f(xr)T(Prag)
Subtract V f (21)T (Py) from both sides

[V (zr +1) = V(@) (Pear) > [(c2 — 1)V f(zg)]T(Prow)

Rewrite
yisk = (c2 — 1)V f(xp)T (Prag)

Because co € (c1,1), c2 — 1 < 0. Assumption (3) means that V f (24)T(Pxcy) < 0. Therefore, the
righthand side in the above inequality is strictly larger than 0 and

ygsk >0

Appendix B. Further details for experiments

Values of the experiments using datasets sido and spam are given in table 2. We also performed
the same comparisons for 49 additional binary classification datasets. The results are summarized
in tables 3 (for datasets where logistic regression perfectly separates the two classes) and 4 (for the
remaining datasets). SO appears to work particularly well on perfectly separable datasets. A typical
convergence plot looks like the one for the leukemia dataset give in figure 2. For datasets that are
not separable, a linesearch could be faster in time. For example, the convergence plot of the w7a
dataset is given in figure 3.

sido Method f(zy) Time (sec) Outer Iters Inner Iters Mat-Vec
GD-SO 2.516832407 21.7 250 21,791 7,423
1-BFGS-Wolfe-default 75.74420322 85.1 250 1,375 4,054
1-BFGS-Wolfe-optimized 0.001548940 3.2 130 805 262
1-BFGS-SO 0.000000017 2.7 57 2,777 1,729

spam Method f(zy) Time (sec) Outer Iters Inner Iters Mat-Vec
GD-SO 0.030161545 40.6 150 6,695 4,791
1-BFGS-Wolfe-default 1176.191233 205.1 150 969 2,814
1-BFGS-Wolfe-optimized 0.000003176 47.0 130 829 262
1-BFGS-SO 0.000000549 27.8 61 1,973 1,675

Table 2: Binary classification of the sido and spam datasets.

FASTER QUASI-NEWTON METHODS FOR LINEAR COMPOSITION PROBLEMS

leukemia

leukemia

Figure 2: Convergence plots using the leukemia dataset. Left plot shows accuracy by number of
iterations and right plot shows accuracy by time taken in seconds.

Figure 3: Convergence plots using the w7a dataset. Left plot shows accuracy by number of itera-
tions and right plot shows accuracy by time taken in seconds.

Dataset m n f(xz,) Best Method
breast-cancer 683 10 0.000 1-BFGS-Wolfe-optimized
breast-cancer_scale 683 10 0.000 1-BFGS-Wolfe-optimized
colon-cancer 62 2,000 0.000 1-BFGS-SO
covtype.binary 581,012 54 0.000 1-BFGS-SO
covtype.binary.scale 581,012 54 0.000 1-BFGS-SO
duke-breast-cancer 38 7,129 0.000 1-BFGS-SO

gisette 1,000 5,000 0.000 1-BFGS-SO

leukemia 34 7,129 0.000 1-BFGS-SO

madelon 600 500 0.000 I-BFGS-SO

mushrooms 8,124 112 0.000 1-BFGS-SO

svmguide3 41 22 0.000 1-BFGS-SO

Table 3: Binary classification of 11 separable datasets. m is the number of samples. n is the dimen-
sionality of the problem. Of the four methods, I-BFGS combined with a line search that
satisfies the Wolfe conditions (optimized for linear composition problems) performed best
on two of the 11 datasets; whereas I-BFGS combined with momentum and SO performed

best on 9 out of the 11 datasets.

10

FASTER QUASI-NEWTON METHODS FOR LINEAR COMPOSITION PROBLEMS

Dataset m n f(zy) Best Method

ala 30,956 123 9,965.230 I-BFGS-SO

a2a 30,296 123 9,698.535 I-BFGS-Wolfe-optimized
al3a 29,376 123 9,432.894 I-BFGS-Wolfe-optimized
ada 27,780 123 8,916.993 1-BFGS-Wolfe-optimized
aSa 26,147 123 8,402.151 1-BFGS-Wolfe-optimized
aba 21,341 123 6,820.987 1-BFGS-Wolfe-optimized
a7a 16,461 123 5,208.236 1-BFGS-SO

a8a 9,865 122 3,038.297 1-BFGS-Wolfe-optimized
a9a 16,281 122 5,188.674 1-BFGS-Wolfe-optimized
australian 690 14 351.958 GD-SO

australian_scale 690 14 221.780 1-BFGS-Wolfe-optimized
cod-rna 157,413 8 20,086.953 1-BFGS-SO

diabetes 768 8 467.326 1-BFGS-Wolfe-optimized
diabetes_scale 768 8 361.823 1-BFGS-Wolfe-optimized
fourclass 862 2 459.449 I-BFGS-SO
fourclass_scale 862 2 456.814 1-BFGS-SO
german.numer 1,000 24 471.626 I-BFGS-SO
german.numer_scale 1,000 24 468.417 1-BFGS-Wolfe-optimized
heart 270 13 93.814 1-BFGS-SO

heart_scale 270 13 95.082 I-BFGS-SO

ijennl 91,701 22 17,935.317 1-BFGS-Wolfe-optimized
ionosphere 351 34 102.134 1-BFGS-Wolfe-optimized
news20.binary 19,996 1,355,191 101.473 1-BFGS-SO

phishing 11,055 68 3,395.035 1-BFGS-SO

rcv1.binary 677,399 47,236 50,321.757 GD-SO

real-sim 72,309 20,958 236.62 1-BFGS-Wolfe-optimized
skin_nonskin 245,057 3 177.446 I-BFGS-Wolfe-default
splice 2,175 60 682.464 1-BFGS-Wolfe-optimized
sonar 208 60 30.010 1-BFGS-Wolfe-optimized
svmguidel 4,000 4 1,386.294 I-BFGS-Wolfe-default
wla 47,272 300 5,212.191 GD-SO

w2a 46,279 300 5,089.004 1-BFGS-Wolfe-optimized
w3a 44,837 300 4,942.815 1-BFGS-Wolfe-optimized
wéa 42,383 300 4,670.944 1-BFGS-Wolfe-optimized
wSa 39,861 300 4,339.669 I-BFGS-SO

wba 32,561 300 3,525.112 1-BFGS-SO

w7a 25,057 300 2,687.469 1-BFGS-Wolfe-optimized
w8a 14,951 300 1,521.792 1-BFGS-Wolfe-optimized

Table 4: Binary classification of 38 datasets that are not separable. m is the number of samples.
n is the dimensionality of the problem. Gradient descent combined with momentum and
SO performed best for 3 datasets; I-BFGS combined with a line search satisfying Wolfe
conditions (non-optimized for linear composition problems) performed best on 2 datasets;
I-BFGS combined with a line search satisfying Wolfe conditions (optimized) performed
best for 21 datasets; I-BFGS combined with momentum and SO performed best on 12
datasets. 11

	Introduction
	Notation
	Quasi-Newton methods
	Momentum direction
	Contribution

	Efficient stepsize searches
	Linesearch
	Subspace search
	Multi-dimension Wolfe conditions

	Practical SO issues
	Initialization
	Choice of SO method

	Experiments
	Discussion
	Multi-dimension Wolfe and the secant equation
	Further details for experiments

