Why Line-Search When You Can Plane-Search?

ISMP 2024, Montreal

Betty Shea, Mark Schmidt University of British Columbia

Getting more without spending (much) more

We could be using better step sizes

For many common machine learning (ML) problems, these step size strategies all have the same asymptotic cost

- fixed step size,
- line search.
- plane search

Polyak's Heavy Ball Method (PHB)

$$\mathbf{x}_{t+1} = \mathbf{x}_t - \alpha_t \nabla f(\mathbf{x}_t) + \frac{\beta_t}{\beta_t} (\mathbf{x}_t - \mathbf{x}_{t-1})$$

• Usually $\alpha_t = \alpha$ and $\beta_t = \beta$

Polyak's Heavy Ball Method (PHB)

$$\mathbf{x}_{t+1} = \mathbf{x}_t - \alpha_t \nabla f(\mathbf{x}_t) + \beta_t (\mathbf{x}_t - \mathbf{x}_{t-1})$$

- Usually $\alpha_t = \alpha$ and $\beta_t = \beta$
- But you can do a plane search for the same cost

$$\alpha_t, \frac{\beta_t}{\beta_t} = \underset{\alpha, \beta}{\operatorname{arg \, min}} f(\mathbf{x_t} - \alpha \nabla f(\mathbf{x_t}) + \beta(\mathbf{x_t} - \mathbf{x_{t-1}}))$$

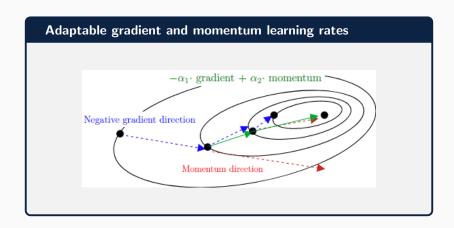
Polyak's Heavy Ball Method (PHB)

$$\mathbf{x}_{t+1} = \mathbf{x}_{t} - \alpha_{t} \nabla f(\mathbf{x}_{t}) + \beta_{t} (\mathbf{x}_{t} - \mathbf{x}_{t-1})$$

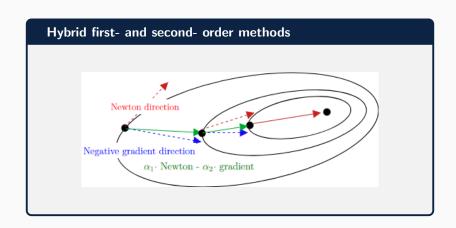
- Usually $\alpha_t = \alpha$ and $\beta_t = \beta$
- But you can do a plane search for the same cost

$$\alpha_{t}, \frac{\beta_{t}}{\beta_{t}} = \underset{\alpha, \beta}{\arg\min} f(\mathbf{x}_{t} - \alpha \nabla f(\mathbf{x}_{t}) + \beta(\mathbf{x}_{t} - \mathbf{x}_{t-1}))$$

- Potentially more progress at every iteration
- No hyperparameter tuning



Another use case: combination methods



Subproblem to solve at every iteration t

Step sizes and search directions are

$$\boldsymbol{\alpha}_t = \begin{bmatrix} \alpha_{t,1} \\ \vdots \\ \alpha_{t,k} \end{bmatrix}, P_t = \begin{bmatrix} | & & | \\ p_{t,1} & \dots & p_{t,k} \\ | & & | \end{bmatrix}$$

Subproblem to solve at every iteration t

Step sizes and search directions are

$$\boldsymbol{\alpha}_t = \begin{bmatrix} \alpha_{t,1} \\ \vdots \\ \alpha_{t,k} \end{bmatrix}, P_t = \begin{bmatrix} | & & | \\ p_{t,1} & \cdots & p_{t,k} \end{bmatrix}$$

The update becomes

$$\mathbf{x_{t+1}} = \mathbf{x_t} + P_t \alpha_t$$

Subproblem to solve at every iteration t

Step sizes and search directions are

$$\boldsymbol{\alpha}_t = \begin{bmatrix} \alpha_{t,1} \\ \vdots \\ \alpha_{t,k} \end{bmatrix}, P_t = \begin{bmatrix} | & & | \\ p_{t,1} & \cdots & p_{t,k} \\ | & & | \end{bmatrix}$$

The update becomes

$$\mathbf{x}_{t+1} = \mathbf{x}_t + P_t \alpha_t$$

Plane search solves this problem

$$\alpha_t \in \operatorname*{arg\,min}_{\alpha} f\left(\mathbf{x_t} + P_t \alpha_t\right)$$

When is plane search efficient?

Matrix-vector multiplications are bottlenecks

Linear composition problems (LCPs)

$$f(\mathbf{x}) = g(A\mathbf{x})$$

Examples:

- least squares: $g(A\mathbf{x}) = \frac{1}{2} ||A\mathbf{x} \mathbf{y}||^2$
- logistic regression: $g(A\mathbf{x}) = \log(1 + \exp(-\mathbf{y} \circ A\mathbf{x}))$

^{*}Narkiss and Zibulevsky (2005) SESOP

Linear Composition Problem (LCP)

Cost of calculating function value

$$f(\mathbf{x}_{t+1}) = g(A(\mathbf{x}_t + P_t \alpha_t)) = g(\mathbf{v}_t + \tilde{P}_t \alpha_t)$$

where

$$\mathbf{v_t} = A\mathbf{x_t} \in \mathbb{R}^m$$
 and $ilde{ ilde{P}_t} = AP_t \in \mathbb{R}^{m imes k}$

Matrix-vector multiplications:

- 1. $\mathbf{v_t} = A\mathbf{x_t}$
- 2. $\tilde{P}_{t,1} = A^{\mathsf{T}} \mathbf{p}_{t,1}$
- 3. ... 4. $\tilde{P}_{t,k} = A^{\mathsf{T}} \mathbf{p}_{t,k}$

k direction plane search on LCP

Subproblem at iteration t

Store $\mathbf{v_t}$ and \tilde{P}_t . Plane search is

$$\alpha_t \in \operatorname*{arg\,min}_{\alpha} f(\mathbf{x}_{t+1}) = g(\mathbf{v}_t - \tilde{\mathbf{P}}_t \alpha)$$
 (1)

- evaluating (1) requires no matrix-vector multiplication
- does require k vector-scalar multiplications
- significant gain if A is big and k is small
- ullet buy 1 lpha get all the other lphas for free

Subproblem at iteration t

PHB is a special case of k-direction plane search

$$\alpha_t = \begin{bmatrix} \alpha_{t,1} \\ \alpha_{t,2} \end{bmatrix}$$
, $P_t = \begin{bmatrix} -\nabla f(x_t) & (x_t - x_{t-1}) \\ 1 & 1 \end{bmatrix}$

$$\alpha_t \in \operatorname*{arg\,min}_{\alpha} f(\mathbf{x_{t+1}}) = g(\mathbf{v_t} + \alpha_{t,1} \tilde{P}_{t,1} + \alpha_{t,2} (\mathbf{v_t} - \mathbf{v_{t-1}}))$$
 (2)

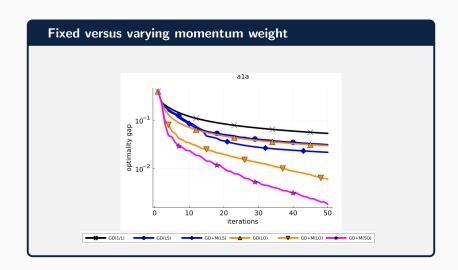
Matrix-vector multiplications

Matrix-vector multiplications

- 1. $\tilde{P}_{t,1} = -A^{\mathsf{T}} \nabla f(\mathbf{x}_{\mathsf{t}}).$
- 2. $\mathbf{v_t} = A\mathbf{x_t}$. (Use $\mathbf{v_{t-1}}$ from previous iteration.)

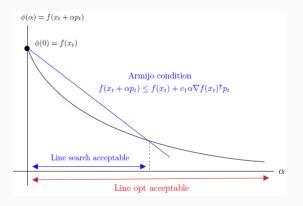
Same as gradient descent with fixed step size and no momentum!

Experiments: GD+M, logistic regression



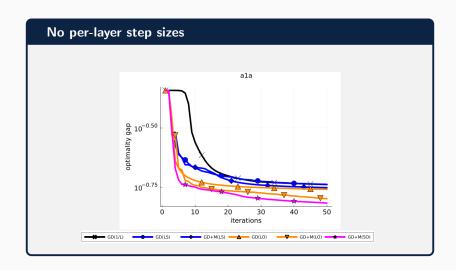
Line search blind spots

Armijo line search may rule out good step sizes

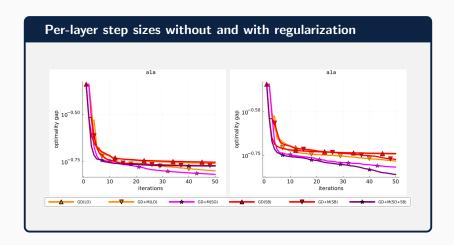


This affects Wolfe conditions too.

Experiments: GD+M, 2-layer NNs



Experiments: GD+M, 2-layer NNs



Experiments: observations

Miscellaneous things we saw from the experiments

- large k (e.g. k > 2) does not appear to help much
- 3-term plane search implementation of Nesterov's acceleration
- can improve on Adam, quasi-Newton methods, etc.

Software development: optimizers with built in plane search

 Alyssa Zhang,
NSERC Undergraduate Student Research Award

Questions

- Does this work in the stochastic case?
- Does this work for modern architectures?

Thank you for listening

(or many) free step sizes

Experiments: GD+M, logistic regression

