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for a in range(1, num epoch+1):
for (inputs, targets) in train_dataloader:
optimizer.zero grad()
outputs = model(inputs)
loss = criterion(outputs, targets)
loss.backward()
optimizer.step()
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Learning rate a;

a in range(1l, num _epoch+1):

for (inputs, targets) in train dataloader:
optimizer.zero_grad()
outputs = model(inputs)
loss = criterion(outputs, targets)
loss.backward()
optimizer.step()

Wip1 = Wy + Qe
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Learning rate a;

a in range(1l, num _epoch+1):

for (inputs, targets) in train dataloader:
optimizer.zero_grad()
outputs = model(inputs)
loss = criterion(outputs, targets)
loss.backward()
optimizer.step()

Wip1 = Wy + Qe
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batch_size channels_one learning_rate accuracy
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Can we set a; on the fly? Some ideas outside of the scope of this talk:

e Barzilai-Borwein
e Polyak step sizes (ask Curtis)
e Preconditioning

e Hyper-gradient descent
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Sub-problem within every iteration of the main loop.

e Outer loop: training loop.
e Inner loop: find “good” learning rate « given fixed

e weights w;
e search direction p;

e ¢(a) = f(w: + ap:)
e ¢'(0) = Vf(w:)" pt, often assumed to be negative
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Step size a



o(a) = f(we + apy)
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P(a) = flw: + apy)
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1. Stochasticity
2. Ineffectiveness

3. Cost per iteration

10
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e Line searches were originally designed for the deterministic setting.
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e Line searches were originally designed for the deterministic setting.
e There are theoretical results for stochastic versions.

e Stochastic backtracking Armijo line searches [Vaswani et al. 2019,
2020, 2025]

e Polyak Non-Monotone Stochastic backtracking Armijo line search
[Galli et al. 2023] (ask Curtis)
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e Line searches were originally designed for the deterministic setting.

e There are theoretical results for stochastic versions.

e Stochastic backtracking Armijo line searches [Vaswani et al. 2019,
2020, 2025]

e Polyak Non-Monotone Stochastic backtracking Armijo line search
[Galli et al. 2023] (ask Curtis)

e Some indication that noise from using mini-batches is beneficial for a line
search. [Roulet et al. 2024]
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e Are we really doing a line search?
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Ineffectiveness OF BRITISH COLUMBIA

e Are we really doing a line search?
e Usually backtracking Armijo with very loose conditions

e More of a sanity check than a search

12



Ineffectiveness
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Linear Regresslon on Synthetic Data
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securacy

aloi [108000, 128], c=1000

Logistic Regression Test Accuracy, Batch Size = 32

dna [2000, 180], c=3

glass [214, 9], c=6

THE UNIVERSITY
OF BRITISH COLUMBIA

iris [150, 4], c=3

as as ——— 0+
$oe Yos Yool
— Adam: 0.88 — Adam: 091 — ‘Adam: 0.41 —— Adam: 0.76
Adam-Armijo; 0.88 | 0 Adam-Armijo: 0.91 | o2 - Adam-Armijo: 0.41 Adam-Armijo: 0.76
Adam-sf: 0.88 Adam-sf: 0.91 - Adam-sf: 0.42 Adam-st: 0.77
Adam-Wolfe: 0.88 | °* Adam-Wolfe: 0.89 | | /- Adam-Wolfe: 0.63 Adam-Wolfe: 0.91
oo b w0 RN 5 I N
letter (15000, 16], c=26 pendigits [7494, 16], c=10 usps [7291,'7291], c=10 australian fsso 14), c=2
as
o
Sos
— Adam: 0.74 04{ | — Adam:0.94 ol | — Adam:0.94 seos | — Adam: 0.82
Adam-Armijo: 0.74 == Adam-Armijo: 0.93 vos) Adam- Armun 079
Adam:sf: 0.75 2| ] - Adamest 0.95 o Adam-sf:
oz 030 Adam Wﬂlfe s

Adam-Wolfe: 0.75

Adam-Wolfe: 0.94

¢ @ 6w

Fpochs
colon-cancer [62, 20001, c=2

00

:
o
cpusmall [8183, 121,

)

)

i
— Adam: 0.77 — Adam: 0.13 {— Adam: 0.79 o5 { — Adam: 0.83
Adam-Armijo: 0.77 | °* Adam-Armijo: 0.11 | ges] | o Adam-Armijo: 0.83
Adam-sf: 0.77 004 Adam-sf: 0.16 | - ~= Adam-sf: 0.85
Adam-Wolfe: 0.77 | g5, Adam-Wolfe: 0.12 | %1 |- Adam-Wolfe: 0.87 | as- Adam-Wolfe: 0.86
IR T w A @ RIS RS
pocs epocs Esocns epocns

17



THE UNIVERSITY

stI’iCte COI’IditiOhS [ OF BRITISH COLUMBIA

Logistic Regression Test Accuracy, Batch Size = 32
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Searching is costly because of additional forward passes

e Generally, number of backtracks is closely monitored

e Wolfe is worse - requires additional backward passes too
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Cost per iteration OF BRITISH COLUMBIA

Searching is costly because of additional forward passes

e Generally, number of backtracks is closely monitored

e Wolfe is worse - requires additional backward passes too

Is a line search needed on all model parameters?
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Maybe not in all cases....

e Almost all parameters in BERT model in embedding and encoder layers
e Classifier parameters change most during fine-tuning

e Classifier parameters are a small fraction of all weights

20
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e Line search accurately on small subset of parameters
e “Premium optimization” on selective parameters

e Similar to using parameter groups

Cached parameters: 99.7% S3-Wolfe

! 1

; ' o

! Embedding { Encoder || Classifier
| 7.95M 2.11M ! By

' -
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Repeated for Line Search

Partial Forward+
artial Backward:
Classifier
Partial Forward: (with grad)
Embeddings + Encoder
(Cache, no grad)

Forward + Backward
(with grad)

e Two forward passes and one backward pass regardless of accuracy

e With some work, can get rid of the final forward pass
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ledgar: Test Set Accuracy by Epoch

Full fine-tuning BertForSequenceClassification model initialized with
pretrained legal-bert-base-uncased checkpoint on the ledgar dataset.
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Using a line search requires considering tradeoffs.

1. Accuracy vs cost per iteration
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Using a line search requires considering tradeoffs.

1. Accuracy vs cost per iteration, or

2. Selectivity vs cost per iteration
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Line search approach OF BRITISH COLUMBIA

Using a line search requires considering tradeoffs.

1. Accuracy vs cost per iteration, or

2. Selectivity vs cost per iteration

With large models, tradeoff 1 will always sacrifice accuracy.

Tradeoff 2 asks which parameters are worth spending optimization effort.
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e Randomly initialized weights

e Line search can give learning rates that are too far from the fixed
learning rates used in the rest of the model

e Other criteria for search other than decreasing loss

e Existing work on curvature aware learning rates suggest that being
too greedy can hurt overall performance
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