A Less Biased Evaluation of Out-of-distribution Sample Detectors

Alireza Shafaei, Mark Schmidt, James Little
University of British Columbia

The Problem
In a typical supervised learning scenario, we assume the samples are drawn from a fixed distribution. What can go wrong in practice?

OD-Test: A less biased evaluation strategy

- A binary classifier: in-distribution vs. out-of-distribution (OOD).
- We do not have access to OOD samples in practice.
- Supervised outlier detection: train a binary classifier on a fixed mixture of outlier and inlier datasets (two-dataset evaluation).
- Complex models can easily overfit to two-dataset classifications. Previous work uses a fixed mixture of two low-dimensional datasets. We show that it yields unreliably optimistic results (see top right).
- A more realistic setup with three datasets (OD-Test):
 1. Observe a clean D_s.
 2. Learn a binary reject function r on the mixture of D_s and D_m.
 3. Test the reject function on the mixture of D_s and D_t.
Repeat over different outlier datasets to obtain a reliable estimate of performance on D_s.

Experimental Setup

- Methods:
 - Uncertainty: MC-Dropout [1], DeepEnsemble [2].
 - Density estimation: PixelCNN++ [3].
 - Open-set recognition: OpenMax [4].
 - Deep learning literature: ODIN [5], Probability Threshold.
 - Outlier/Anomaly detection: K-NN, Reconstruction-based.
 - Other: K-NN on Autoencoder and VAE latent representations, SVM on logits, K-way logistic regression loss, direct binary classification.

- Models:
 - VGG-16
 - Resnet-50

- Datasets:
 - MNIST
 - FashionMNIST
 - NotMNIST
 - CIFAR10
 - CIFAR100
 - STL10
 - Tinyimagenet
 - Uniform Noise
 - Gaussian Noise

A Short Summary of Results

- A two-dataset evaluation can make us too optimistic.
- Simpler/cheaper data mining approaches work as well as the recently proposed methods in low-dimensional settings.
- None of the methods work well on high-dimensional data.
- VGG-16 is better than Resnet-50 for this task, even though the Resnet model has a higher image classification accuracy.
- For a more reliable assessment, future work should use OD-test instead of two-dataset evaluations.

Selected References

Replicate the results on GitHub
https://github.com/ashafaei/OD-test