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Video Games vs. Reality

Synthetic CamVid1] Cityscapes [2]
| | A Synthetic.A camera is mounted on a car, and an autonomous
Video game Google street view driver wanders around the city while a separate process
Are existing video games visually realistic enough to improve captures data. We collect over 60,000 samples with annotatic
computer vision models In practice? A CamVidand CityscapesA 5class annotation of the data.
A CamVid and CityscapesA 12class annotation of the data.
Why Video Games? Fine-tuned Dense Image Classification

A Free Groundtruth Annotation: image segmentation,depth maps,
surfacenormals shadowspreciselocalization,opticalflow, etc.

A Controllable Environment variationsof seasonstimes of the day,
climatesettings,points of view, interactions,etc.

A Automation and Scalability

Method

A DenselmageClassificationMeasurethe performanceof FCNs [3]
In two approaches (i) fine-tuning on a realworld dataset with
variouspre-training strategiesand (i) crossdatasetevaluation

A Depth Estimation Measure the improvement in image patch Cross-dataset Dense Image Classification
orderingtaskunderthe methodof Zoranet al. [4]. Class Accuracy on Cityscapess
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Summary of Results

A A convolutional network trained on synthetic data achievesa
similartest error to a network that is trained on realworld data for 0.4 o pasciine
denseimageclassificatioron a new dataset 0 | BT R

A The video game dataset can deliver similar or better results £ & &F & &
comparedto the realworld datasetsif a simpledomainadaptation
techniqgueis applied

A Pretraining on synthetic data resultsin better initialization and
final localminimain the optimizationof convolutionalnetworks ol .

A Videogamescanoffer an alternativewayto compilelargedatasets N 5ascine
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