
RegNet: Regularizing Deep Networks

Setareh Cohan
Department of Computer Science
University of British Columbia

setarehc@cs.ubc.ca

Saeid Naderiparizi
Department of Computer Science
University of British Columbia

saeidnp@cs.ubc.ca

Abstract

One of the most important issues in deep learning is the
need for huge corpus of training samples to achieve de-
sired results. Otherwise, any powerful model will overfit the
training data. One way to overcome this problem is adding
regularizers to the loss function in order to hold back the
model from overfitting. Regularization is one of the crucial
ingredients of model training. It plays an important role
in preventing overfitting and reducing generalization error.
Most of the efforts in regularizing deep networks has been
focused on perturbing data and changing the structure of
the network (e.g. Dropout). In this work, we focus on reg-
ularizing the network by adding a prior to the loss function
based on similarities among labels. Particularly, we con-
sider an image classification task where very few training
samples are available for some classes and, study and ex-
pand a work[15] which adds a regularizer to push weight
vectors corresponding to visually similar classes, to be sim-
ilar.

1. Introduction
Training a classifier that well generalizes with only a few

training samples is a hard problem. As an example, hav-
ing a large dataset with hundreds of classes where a few
of them have less than 10 training samples, it will be diffi-
cult to correctly classify these rare samples. In this work,
we try to tackle this problem by “transferring” information
between relevant classes. The idea is that if a network bor-
rows general features of a rare class from relevant classes,
only the distinctive features specific to the rare class need
to be learned. At the very least, the network should confuse
the rare class with related classes and not with completely
unrelated classes [15]. We show an example in Figure 1.

Our goal is to tackle the problem of image classification
with few training samples for some classes by utilizing a
task-specific regularizer. Looking back at common regu-
larizing methods for deep networks, using class-dependent
information seems a promising and not well-explored di-

Figure 1. we have 100 classes of animals each with 600 image
samples except for the “tiger” class which only contains 10 sam-
ples. If we train our network on the whole dataset, it will mis-
classify the test tiger samples. However, by transferring high level
features from “leopard” and “lion” classes, the network has the
general features of tigers(e.g., body shape and background format)
and only needs to learn features specific to tigers (e.g., color and
pattern of skin).

rection of possible development of a new regularization
method [7]. To this end, we first need to have visually sim-
ilar classes and then, we should regularize the network by
encouraging weight vectors corresponding to these classes,
to be similar.

The task of detecting visually similar classes is a hard
problem itself. We either need some prior knowledge about
classes or we need a good model to represent each class
and their relations. The first approach we try is to sim-
ply use prior knowledge about the classes from other do-
mains (more specifically, semantic similarity of classes).
However, this is not promising to significant improvements,
as visual similarity is not necessarily reflected in semantic
space. Therefore, we try to make use of the model itself
as our second approach. Initially, we use semantic similar-
ity as our similarity measure. As the model learns how to
classify images, we refine the similarities. This is discussed
in more detail in section 3. We use hierarchies as a means
to obtain similarity of classes. This is done by assuming
that two classes in the same superclass (two leaves with the

1

same parent in the hierarchy) are similar.

We propose a procedure for learning the class structure
and parameters of the neural network with the goal of im-
proving classification accuracy for rare classes. Similar to
[15], we add a generative prior over the weights in the last
layer of our network. To this end, we encourage the weight
vectors of related classes to be similar. This shared prior
will capture the common features across all children of a su-
perclass. Consequently, rare classes have access to this in-
formation by being a member of a superclass. More gener-
ally, information will be transferred among related classes.

2. Related Work

The idea of using class similarities to regularize a clas-
sification deep neural network is proposed in [15]. They
use a fixed hierarchy of classes and also propose a method
for updating the hierarchy and show a slight improvement
in the classification accuracy when number of training sam-
ples per class is small. We also use fixed and dynamic hier-
archies in this work. For fixed hierarchy setting, we utilize
the hierarchy provided in our dataset as [15]. However, we
will use a different method for the dynamic hierarchy set-
ting with the hope of improving the results of [15].

Hierarchies are a natural way to organize concepts and
data [4]. Therefore, there has been an extensive amount
of research on building hierarchies for a selection of data.
For images, a good image hierarchy can serve as knowledge
reference for end tasks such as classification.

Three types of hierarchies have been explored in com-
puter vision: semantic hierarchies, visual hierarchies and
hybrid hierarchies. Pure language-based hierarchies such
as WordNet [11, 1], have been used in vision and multime-
dia communities for tasks such as image retrieval [5, 2] and
object recognition [9, 16]. These hierarchies ignore impor-
tant visual information that connect images together. For
instance, snowy mountain and skiing are far in the WordNet
hierarchy, while they are visually close [8]. On the other
end, some purely visual feature-based hierarchies have also
been represented [10, 14]. An advantage of these hierar-
chies is capturing visual relations between objects and con-
cepts. But, they are difficult to interpret which makes the
usage of them questionable. Motivated by having a mean-
ingful visual hierarchy, methods have been proposed to con-
struct hierarchies using both semantic and visual similari-
ties [8, 18, 17].

We will try a solely semantic hierarchy in our fixed set-
ting and then, learn the dynamic hierarchy by initializing
it with a semantic hierarchy and updating it based on the
weight vectors of last layer of the network. Thus, our dy-
namic hierarchy falls in the class of hybrid hierarchies.

Figure 2. A 2-level hierarchy.

3. Detailed Approach
We generally follow the proposed method in [15] which

uses a 2-level hierarchy of classes (figure 2) to impose a
prior over the network’s last layer parameters. Two cases
are considered: first, a fixed hierarchy of classes will be uti-
lized and second, the hierarchy will be learned as the net-
work is being trained. We briefly explain these two cases in
sections 3.1 and 4.4 and finally, we propose our own ideas
about the potential alternatives to learning the hierarchy in
section 3.3.

3.1. Fixed Hierarchy

In this setting and with the same notation as [15], it is
assumed that the classes are organized in a fixed hierarchy
which is available from some external resource. Consider
the two level hierarchy as shown in figure 3b. There are K
leaf nodes corresponding to K classes which are connected
to S super-classes. Leaf node k is associated with a weight
vector βk ∈ RD and each super class s is associated with
a weight vector θs ∈ RD. The following distributions are
assumed for θ and β which show the relationship between
classes and super classes:

θs ∼ N (0,
1

λ1
ID), βk ∼ N (θparent(k),

1

λ2
ID)

The general format of loss function for training the network
(as shown in figure 3a) is:

L(w, β, θ) =− logP (Y|X ,w, β)

+
λ2
2
‖w‖2 + λ2

2

K∑
k=1

‖βk − θparent(k)‖2

+
λ1
2
‖θ‖2

(1)

which is derived from the following MAP estimate:

P (Y|X) =
∫

w,β,θ

[
P (Y|X ,w, β)

P (w)P (β|θ)P (θ)dwdβdθ
] (2)

2

(a) (b)

Figure 3. Model: A deep neural network with hierarchy-based priors over the last layer parameters [15].

The loss function in 1 is optimized by iteratively following
the next two steps:

1. Minimize over w and β, keeping θ fixed which can
be done by any standard optimizer such as stochastic
gradient descent (SGD).

2. Minimize over θ, keeping β fixed which can be done
in closed form as below. (|Cs| is the number of nodes
whose parent is s.)

θ∗ =
1

|Cs|+ λ1/λ2

∑
k∈Cs

βk

In our experiments, the second step which is almost instan-
taneous is only performed after every T gradient descent
steps where T is set to 50. We perform the above steps L
times and then update the hierarchy structure. We set L to
10000 in our experiments.1

3.2. Dynamic Hierarchy

In this setting, a fixed hierarchy is not presented to the
model and the goal will be to learn the hierarchy while train-
ing the network. In [15], z is a K-length vector such that
zk = s indicates class k is a child of super class s. Then, a
non-parametric Chinese restaurant prior (CRP) is used over
z which enables the model to have any number of super
classes.
Using the CRP prior over z, the MAP estimate is:

P (Y|X) =
∑
z

(∫
w,β,θ

[
P (Y|X ,w, β)P (w)

P (β|θ, z)P (θ)dwdβdθ
])
P (z)

(3)
1We set T and L according to suggested values in [15].

This, leads to maximizing the following expression:

max
w,β,θ,z

logP (Y|X ,w, β) + logP (w)

+ logP (β|θ, z) + logP (θ) + logP (z)
(4)

The hierarchy should be first initialized carefully either by
hand or by extracting it from some external source such as
WorldNet [11].

3.3. Dynamic Hierarchy Extension

In this work, we propose other potential efficient and ef-
fective methods to learn the hierarchy and we hope to im-
prove the results of [15]. We have four ideas for learning
the hierarchy which will be explained later in this section.

3.3.1 Steiner Tree Problem Approach

One idea is to use a pre-trained network with normal L2-
norm regularization over all weights (without taking hierar-
chy of classes into account) as the initial network and gener-
ate a hierarchy based on the weight vectors of classes in this
pre-trained model and update the hierarchy after every few
steps of updating the network’s parameters. Let βtk be the
the weight vector corresponding to class k after t updates
which is the moment we want to update (or generate, in case
of t = 0) the structure of the hierarchy. We consider βtk for
all classes in a d-dimensional hyperspace (where d is the
dimension of each βk) and solve the “minimum length con-
nection” problem which we define as the problem of draw-
ing some straight lines so that all these points are connected
together and the sum of length of lines is minimum. It is
possible to add a set of auxiliary points, {α1, α2, . . . , αm},
if needed, to reduce sum of line lengths. As an example,
figure 4a shows 4 points in 2D space which are connected

3

(a) minimum length without auxiliary points. (b) minimum length with adding auxiliary points.

Figure 4. Model: minimum length connection problem.

with the minimum length of lines but no auxiliary points is
added. On the other hand, figure 4b shows the same 4 points
which are connected by less amount of sum of lines lengths
using the help of auxiliary points α1 and α2. Intuitively, to
solve minimum length connection problem, points that are
close to each other, should be connected to a single auxil-
iary point and we use that shared point as their parent in
the hierarchy (for example, in case of figure 4, α1 would be
θvehicle and α2 would be θanimal).
This problem is equivalent to the Euclidean Steiner tree
problem which is to find the tree with minimal Euclidean
length spanning a set of fixed points in the plane, allowing
the addition of auxiliary points to the set (Steiner points).
Unfortunately, the Steiner tree problem is NP-hard. There
are many heuristics that allow computing a locally optimal
solution [3, 12, 13] to this problem. However, all these
heuristics are either too vague in description or are ineffi-
cient for a hyper dimensional network (most methods are
applicable for dimension up to a 100 while with neural net-
works, we deal with dimensions around 1000 or more).

3.3.2 Greedy Approach

A simpler approach would be to initialize the hierarchy us-
ing some external source again. For instance, we can greed-
ily add each class to its nearest super-class over all the
super-classes. Although this method does not guarantee im-
provements over [15], it is easier to implement and also, it
is computationally cheap.

3.3.3 K-means Approach

Moreover, we could perform k-means clustering over the
classes. One drawback of this method would be determin-
ing k. On the other hand, an advantage of this method is
that it does not depend on an initial hierarchy like the previ-
ous methods, making it suitable for cases where there is no
hierarchy of classes available.

Figure 5. Examples from CIFAR-100. Five randomly chosen ex-
amples from 5 of the 100 classes are shown.

3.3.4 Expectation Maximization Approach

Besides the aforementioned ideas, another extension we
think of is using expectation maximization (EM) algorithm.
This approach of solving this problem has some hidden
variables (i.e. θc) to learn, which can be extracted using
EM.

After taking the drawbacks and time constraints of our
work, we decided to implement the greedy approach and
the k-means approach for learning the class hierarchy. We
set the value of k to 25 empirically.

4. Experiments

4.1. Dataset

We will evaluate our method on CIFAR-100 dataset [6].
This dataset consists of 32×32 color images belonging to
100 classes. These classes are grouped into 20 super-classes
each containing 5 classes. For example, super class insects
contains bee, beetle, butterfly, caterpillar, cockroach and
super class trees contains maple, oak, palm, pine, willow.
There are 600 examples for each class of which 500 are in
the training set and the remaining are in the test set. Some
examples of this dataset are available in Fig 5.

4

4.2. Model Architecture

We use a convolutional neural network (CNN) as our
learning model. It consists of three convolutional layers fol-
lowed by 2 fully connected layers. Each convolutional layer
is followed by a max-pooling layer. The convolutional lay-
ers have 96, 128 and 256 filters respectively. Each convolu-
tional layer has a 5×5 receptive field applied with a stride
of 1 pixel. Each max pooling layer pools 3×3 regions at
strides of 2 pixels. The two fully connected hidden layers
having 2048 units each. All units use the rectified linear ac-
tivation function. Dropout was applied to all the layers of
the network with the rate of p = (0.1, 0.25, 0.25, 0.5, 0.5,
0.5) for the different layers of the network, from input to
convolutional layers to fully connected layers.

4.3. Experimental Setup Details

We use a learning rate of 0.01 and divide it by 10 ev-
ery 50 epochs. We use a total of 150 epochs to train our
network. The optimizer we use is SGD with Nesterov mo-
mentum.
We tuned the hyper parameters λ1 and λ2 for the fixed hi-
erarchy setting, with grid search. After 20 hours of search,
λ1 = 10−12 and λ2 = 10−8 were reported to be the best
values.

4.4. Experiment on Few Examples for All Classes

In the first set of experiments, we consider the case
where all classes have few training samples. We want to
assess whether using the prior based on class hierarchy, im-
proves the classification accuracy as we expected and was
showed in [15]. We create 7 subsets of data by randomly
choosing 5, 10, 20, 50, 70 and 100 percent of samples for
each class. Then, we train four models on each subset - the
baseline, our model with the CIFAR-100 hierarchy which
we call FixedTree, our model where we learn the hierar-
chy using the greedy approach explained in 3.3.2 which we
call DynamicTree-Greedy, and our model where we
learn the hierarchy using the k-means approach explained in
3.3.3 which we call DynamicTree-Kmeans. The base-
line model is a standard CNN with the same architecture
explained in 4.2.

The performance of these four models is compared in Fig
6 and Fig 7. As we can see in both of the plots, accuracy
of different approaches are almost identical. For the top-1
accuracy, we do not have any improvements after using the
hierarchies. This was not completely unexpected since all
classes are lacking samples and relative classes might not
have sufficient number of sample to convey useful informa-
tion to one another.
In our top-5 results, we have a small improvement by using
the hierarchies over no hierarchy which complies with re-
sults of [15]. Learning the hierarchy with greedy approach
improves the results of fixed hierarchy, but, learning it with

Figure 6. Top-1 classification accuracy on CIFAR-100 with few
samples for all classes.

Figure 7. Top-5 classification accuracy on CIFAR-100 with few
samples for all classes.

kmeans approach does not give much improvements over
the fixed hierarchy setting. This could again be the result of
all classes lacking samples and thus, being unable to borrow
useful information from one another.

We believe that our method is specially effective if only
a few number of rare classes exist in our dataset. These
classes will be able to borrow information from their re-
lated classes and the classification accuracy over these rare
classes will improve. We will test this hypothesis in 4.5.

4.5. Experiments on Few Examples for One Class

In this set of experiments, we consider the case where
only one class has few training samples. Here, our goal
is to see whether our model enables the rare class to
borrow information from its related classes and thus, in-
crease the classification accuracy of the rare class. We
create datasets by randomly choosing 5, 10, 20, 50,
70 and 100 percent of samples for the “dolphin” class
and all 500 samples for the other 99 classes2. Again,
we train our four models on each subset - the baseline,
the FixedTree, the DynamicTree-Greedy, and the
DynamicTree-Kmeans.

The performance of these four models is compared in

2We chose the “dolphin” class as was done in [15]

5

Figure 8. Classification results on CIFAR-100 with few samples
for one class.

Figure 8. As expected, we see improvements using hier-
archies over the baseline which is consistent with the re-
sults of [15]. Up to about 65%, we get the most improve-
ment from DynamicTree-Greedy approach and then
the fixed hierarchy and lastly, DynamicTree-Kmeans
with and accuracy almost identical to the baseline. We ex-
pected that learning hierarchies would improve the results
over the fixed hierarchy setting which can be seen from the
results of DynamicTree-Greedy. However, using the
hierarchy learned by DynamicTree-Kmeans, the accu-
racy is almost identical to the baseline and lower than the
fixed hierarchy which is completely unexpected. This might
be due to the fact that we do not use any data augmentations
in our code.

5. Conclusion
We test a model that augments standard CNNs with a

generative prior derived from a fixed hierarchy of classes
over the classification parameters which was suggested in
[15]. We also test a setting where the prior is derived from
a dynamic hierarchy learned as the CNN is being trained.
However, in this setting, we proposed four alternative meth-
ods to the one suggested in [15] and tested two of them.

Since [15] do not provide their implementation, we first
tried to recreate their work as much as we could for the
baseline and FixedTree setting. However, due to lack of
specifications and details on their implementation, our re-
sults did not achieve the same exact performance as theirs
did. Fortunately, we were still able to compare the results of
the baseline, FixedTree, DynamicTree-Greedy and
DynamicTree-Kmeans with one another in order to as-
sess if and how each of them affects the classification accu-
racy.

Experiments show that we achieve some increase in the
classification accuracy when hierarchy of classes is used.
This is specially visible when we have a small number of
rare classes. As expected, this suggests that classes do bor-
row information from one another. The future directions

for this work would be to reach the same accuracy as [15].
Then, we could improve the results so that the learned hi-
erarchy by DynamicTree-Kmeans would result in some
improvements. Next, it would be interesting to see whether
the Steiner tree and expectation maximization approaches
can be implemented and tested.

References
[1] What is wordnet? https://wordnet.princeton.edu/. Accessed:

2018-03-09.
[2] R. Datta, W. Ge, J. Li, and J. Z. Wang. Toward bridging the

annotation-retrieval gap in image search. IEEE MultiMedia,
14(3), 2007.

[3] D. R. Dreyer and M. L. Overton. Two heuristics for the eu-
clidean steiner tree problem. Journal of Global Optimization,
13(1):95–106, 1998.

[4] T. L. Griffiths, M. I. Jordan, J. B. Tenenbaum, and D. M.
Blei. Hierarchical topic models and the nested chinese
restaurant process. In Advances in neural information pro-
cessing systems, pages 17–24, 2004.

[5] Y. Jin, L. Khan, L. Wang, and M. Awad. Image annotations
by combining multiple evidence & wordnet. In Proceedings
of the 13th annual ACM international conference on Multi-
media, pages 706–715. ACM, 2005.

[6] A. Krizhevsky. Learning multiple layers of features from
tiny images. 2009.

[7] J. Kukačka, V. Golkov, and D. Cremers. Regulariza-
tion for deep learning: A taxonomy. arXiv preprint
arXiv:1710.10686, 2017.

[8] L.-J. Li, C. Wang, Y. Lim, D. M. Blei, and L. Fei-Fei. Build-
ing and using a semantivisual image hierarchy. In Computer
Vision and Pattern Recognition (CVPR), 2010 IEEE Confer-
ence on, pages 3336–3343. IEEE, 2010.

[9] M. Marszalek and C. Schmid. Semantic hierarchies for vi-
sual object recognition. In Computer Vision and Pattern
Recognition, 2007. CVPR’07. IEEE Conference on, pages
1–7. IEEE, 2007.

[10] M. Marszałek and C. Schmid. Constructing category hier-
archies for visual recognition. In European Conference on
Computer Vision, pages 479–491. Springer, 2008.

[11] G. A. Miller. Wordnet: a lexical database for english. Com-
munications of the ACM, 38(11):39–41, 1995.

[12] A. Olsen, S. Lorenzen, R. Fonseca, and P. Winter. Steiner
tree heuristics in euclidean d-space. Proc. of the 11th DI-
MACS Implementation Challenge, 2014.

[13] T. Polzin and S. Vahdati Daneshmand. The steiner tree
challenge: an updated study. Unpublished manuscript at
http://dimacs11. cs. princeton. edu/downloads. html, 2014.

[14] J. Sivic, B. C. Russell, A. Zisserman, W. T. Freeman, and
A. A. Efros. Unsupervised discovery of visual object class
hierarchies. In Computer Vision and Pattern Recognition,
2008. CVPR 2008. IEEE Conference on, pages 1–8. IEEE,
2008.

[15] N. Srivastava and R. R. Salakhutdinov. Discriminative trans-
fer learning with tree-based priors. In Advances in Neural
Information Processing Systems, pages 2094–2102, 2013.

6

[16] A. Torralba, R. Fergus, and W. T. Freeman. 80 million tiny
images: A large data set for nonparametric object and scene
recognition. IEEE transactions on pattern analysis and ma-
chine intelligence, 30(11):1958–1970, 2008.

[17] C. Zhang, J. Cheng, and Q. Tian. Image-level classification
by hierarchical structure learning with visual and semantic
similarities. Information Sciences, 422:271–281, 2018.

[18] C. Zhang, R. Li, Q. Huang, and Q. Tian. Hierarchical deep
semantic representation for visual categorization. Neurocom-
puting, 257:88–96, 2017.

6. Appendices
We have included the fixed hierarchy of CIFAR-100,

the learned hierarchy using our DynamicTree-Greedy
method, and the learned hierarchy using our
DynamicTree-Kmeans method in tables 1,2 and 3
respectively. Note that the learned hierarchy obtained by
DynamicTree-Kmeans has 25 superclasses since k of
k-means is set to 25.
We can see that the DynamicTree-Greedy approach
has not changed the fixed hierarchy and the learned
hierarchy by this approach has remained the same as
before. However, DynamicTree-Kmeans has updated
the hierarchy. Some of these updates are meaningful. For
instance, “forest” class is now a part of superclass 4 which
contains all the tree classes. Another example would be
putting “snake” and “worm” into a single superclass. But,
some of these updates are not that natural.

7

Superclass Classes

aquatic mammals dolphin, whale, seal, otter, beaver
fish aquarium fish, flatfish, ray, shark, trout

flowers orchid, poppy, rose, sunflower, tulip
food containers bottle, bowl, can, cup, plate

fruit and vegetables apple, mushroom, orange, pear, sweet pepper
household electrical devices clock, keyboard, lamp, telephone, television

household furniture bed, chair, couch, table, wardrobe
insects bee, beetle, butterfly, caterpillar, cockroach

large carnivores bear, leopard, lion, tiger, wolf
large man made outdoor things bridge, castle, house, road, skyscraper

large natural outdoor scenes cloud, forest, mountain, plain, sea
large omnivores and herbivores camel, cattle, chimpanzee, elephant, kangaroo

medium sized mammals fox, porcupine, possum, raccoon, skunk
non insect invertebrates crab, lobster, snail, spider, worm

people baby, boy, girl, man, woman
reptiles crocodile, dinosaur, lizard, snake, turtle

small mammals hamster, mouse, rabbit, shrew, squirrel
trees maple, oak, palm, pine, willow

vehicles 1 bicycle, bus, motorcycle, pickup truck, train
vehicles 2 lawn mower, rocket, streetcar, tank, tractor

Table 1. Given hierarchy for the CIFAR-100 dataset.

Superclass Classes

superclass 1 beaver, dolphin, otter, seal, whale
superclass 2 aquarium fish, flatfish, ray, shark, trout
superclass 3 orchid, poppy, rose, sunflower, tulip
superclass 4 bottle, bowl, can, cup, plate
superclass 5 apple, mushroom, orange, pear, sweet pepper
superclass 6 clock, keyboard, lamp, telephone, television
superclass 7 bed, chair, couch, table, wardrobe
superclass 8 bee, beetle, butterfly, caterpillar, cockroach
superclass 9 bear, leopard, lion, tiger, wolf

superclass 10 bridge, castle, house, road, skyscraper
superclass 11 cloud, forest, mountain, plain, sea
superclass 12 camel, cattle, chimpanazee, elephant, kangaroo
superclass 13 fox, porcupine, possum, raccoon, skunk
superclass 14 crab, lobster, snail, spider, worm
superclass 15 baby, boy, girl, man, womean
superclass 16 crocodile, dinosaur, lizard, snake, turtle
superclass 17 hamster, mouse, rabbit, shrew, squirrel
superclass 18 maple, oak, palm, pine, willow
superclass 19 bicycle, bus, motorcycle, pickup truck, train
superclass 20 lawn mower, streetcar, tank, tractor, rocket

Table 2. Learned hierarchy by DynamicTree-Greedy method.

8

Superclass Classes

superclass 1 raccoon, skunk, wolf
superclass 2 bicycle, caterpillar, lizard, rocket, spider
superclass 3 hamster, mouse, porcupine, possum, shrew
superclass 4 forest, maple, oak, palm, pine, willow
superclass 5 bowl, can, clock, plate
superclass 6 aquarium fish, orchid, poppy, rose, sunflower, tulip
superclass 7 crocodile, ray, trout, turtle
superclass 8 bus, lawn mower, motorcycle, pickup truck , streetcar, tank, tractor, train
superclass 9 bridge, castle, house, road
superclass 10 bottle, cup. lamp, television, wardrobe
superclass 11 bear, beaver, chimpanzee, otter, seal
superclass 12 bee, beetle, butterfly, cockroach
superclass 13 snake, worm
superclass 14 bed, chair, couch, table
superclass 15 baby, boy, girl, man, woman
superclass 16 camel, cattle, elephant, kangaroo
superclass 17 fox, leopard, lion, tiger
superclass 18 dolphin, shark, whale
superclass 19 crab, lobster
superclass 20 flatfish, rabbit
superclass 21 apple, orange, pear, sweet pepper
superclass 22 cloud, mountain, plain, sea
superclass 23 keyboard, telephone
superclass 24 dinosaur, mushroom
superclass 25 snail, squirrel

Table 3. Learned hierarchy by DynamicTree-Kmeans method.

9

