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Big-N Problems

We can write our standard regularized optimization problem as

min
x∈Rd

1

n

n∑

i=1

fi(x) + r(x)

data fitting term + regularizer

Gradient methods are effective when d is very large.

What if number of training examples n is very large?

E.g., ImageNet has more than 14 million annotated images.



Stochastic Subgradient Convergence Rate of SSG Practical Subgradient Methods Stochastic Average Gradient Infinite Data Sets

Big-N Problems

We can write our standard regularized optimization problem as

min
x∈Rd

1

n

n∑

i=1

fi(x) + r(x)

data fitting term + regularizer

Gradient methods are effective when d is very large.

What if number of training examples n is very large?

E.g., ImageNet has more than 14 million annotated images.



Stochastic Subgradient Convergence Rate of SSG Practical Subgradient Methods Stochastic Average Gradient Infinite Data Sets

Stochastic vs. Deterministic Gradient Methods

We consider minimizing f(x) = 1
n

∑n
i=1 fi(x).

Deterministic gradient method [Cauchy, 1847]:

xt+1 = xt − αt∇f(xt) = xt − αt
n

n∑

i=1

∇fi(xt).
Iteration cost is linear in n.
Convergence with constant αt or line-search.

Stochastic gradient method [Robbins & Monro, 1951]:
Random selection of it from {1, 2, . . . , n}.

xt+1 = xt − αt∇fit(xt).
Direction is an unbiased estimate of true gradient,

E[f ′it(x)] =
1

n

n∑

i=1

∇fi(x) = ∇f(x).

Iteration cost is independent of n.
Convergence requires αt → 0.
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Stochastic vs. Deterministic Gradient Methods
We consider minimizing f(x) = 1

n

∑n
i=1 fi(x).

Deterministic gradient method [Cauchy, 1847]:

Stochastic vs. deterministic methods

• Minimizing g(θ) =
1

n

n∑

i=1

fi(θ) with fi(θ) = "
(
yi, θ

!Φ(xi)
)

+ µΩ(θ)

• Batch gradient descent: θt = θt−1−γtg
′(θt−1) = θt−1−

γt

n

n∑

i=1

f ′
i(θt−1)

• Stochastic gradient descent: θt = θt−1 − γtf
′
i(t)(θt−1)

Stochastic gradient method [Robbins & Monro, 1951]:

Stochastic vs. deterministic methods

• Minimizing g(θ) =
1

n

n∑

i=1

fi(θ) with fi(θ) = "
(
yi, θ

!Φ(xi)
)

+ µΩ(θ)

• Batch gradient descent: θt = θt−1−γtg
′(θt−1) = θt−1−

γt

n

n∑

i=1

f ′
i(θt−1)
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′
i(t)(θt−1)



Stochastic Subgradient Convergence Rate of SSG Practical Subgradient Methods Stochastic Average Gradient Infinite Data Sets

Stochastic vs. Deterministic Gradient Methods

Stochastic iterations are n times faster, but how many iterations?

Assumption Deterministic Stochastic

Convex O(1/
√
ε) O(1/ε2)

Strongly O(log(1/ε)) O(1/ε)

Stochastic has low iteration cost but slow convergence rate.

Sublinear rate even in strongly-convex case.
Bounds are unimprovable if only unbiased gradient available.

Nesterov acceleration and momentum do not improve rate
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Stochastic vs. Deterministic Convergence Rates

Plot of convergence rates in strongly-convex case:

Stochastic vs. deterministic methods

• Goal = best of both worlds: linear rate with O(1) iteration cost

time

lo
g(

ex
ce

ss
 c

os
t)

stochastic

deterministic

Stochastic will be superior for low-accuracy/time situations.
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Stochastic vs. Deterministic for Non-Smooth

The story changes for non-smooth problems.

Consider the binary support vector machine objective:

f(w) =

n∑

i=1

max{0, 1− yi(wTxi)}+
λ

2
‖w‖2.

Rates for subgradient methods for non-smooth objectives:

Assumption Deterministic Stochastic

Convex O(1/ε2) O(1/ε2)
Strongly O(1/ε) O(1/ε)

Other black-box methods (cutting plane) are not faster.

For non-smooth problems:

Deterministic methods are not faster than stochastic method.
So use stochastic (iterations are n times faster).
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Sub-Gradients and Sub-Differentials

Recall that for differentiable convex functions we have

f(y) ≥ f(x) +∇f(x)T (y − x),∀x, y.

A vector d is a subgradient of a convex function f at x if

f(y) ≥ f(x) + dT (y − x),∀y.
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Sub-Gradients and Sub-Differentials
Recall that for differentiable convex functions we have

f(y) ≥ f(x) +∇f(x)T (y − x),∀x, y.

A vector d is a subgradient of a convex function f at x if

f(y) ≥ f(x) + dT (y − x), ∀y.

At differentiable x:

Only subgradient is ∇f(x).

At non-differentiable x:

We have a set of subgradients.
Called the sub-differential, ∂f(x).
Sub-differential is always non-empty for (almost) all convex functions.

Note that 0 ∈ ∂f(x) iff x is a global minimum (generalizes ∇f(x) = 0).
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Sub-Differential of Absolute Value and Max Functions

Sub-differential of absolute value function:

∂|x| =





1 x > 0

−1 x < 0

[−1, 1] x = 0

(sign of the variable if non-zero, anything in [−1, 1] at 0)
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Sub-Differential of Absolute Value and Max Functions
Sub-differential of absolute value function:

∂|x| =





1 x > 0

−1 x < 0

[−1, 1] x = 0

(sign of the variable if non-zero, anything in [−1, 1] at 0)

Sub-differential of sum of convex f1 and f2:

∂(f1(x) + f2(x)) = ∂f1(x) + ∂f2(x).

Sub-differential of max of convex f1 and f2:

∂max{f1(x), f2(x)} =





∇f1(x) f1(x) > f2(x)

∇f2(x) f2(x) > f1(x)

θ∇f1(x) + (1− θ)∇f2(x) f1(x) = f2(x)

(any “convex combination” of the gradients of the argmax)
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Subgradient Method
The basic subgradient method:

xt+1 = xt − αtgt,
for some gt ∈ ∂f(xt).

Unfortunately, may increase the objective even for small αt.
But, distance to solution decreases:

‖xt+1 − x∗‖ < ‖xt − x∗‖ for small enough α.
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Strong-Convexity Inequalities for Non-Differentiable f

A “first-oder” relationship between subgradient and strong-convexity:

If f is µ-strongly convex then for all x and y we have

f(y) ≥ f(x) + f ′(y)T (y − x) +
µ

2
‖y − x‖2,

for f ′(y) ∈ ∂f(x).
The first-order definition of strong-convexity, but with subgradient replacing gradient.

Reversing y and x we can write

f(x) ≥ f(y) + f ′(x)T (x− y) +
µ

2
‖x− y‖2,

for f ′(x) ∈ ∂f(x).
Adding the above together gives

(f ′(y)− f ′(x)T (y − x)) ≥ µ‖y − x‖2.
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Stochastic Subgradient Method

The basic stochastic subgradient method:

xt+1 = xt − αgit ,

for some git ∈ ∂fit(xt) for some random it ∈ {1, 2, . . . , n}.

Stochastic subgradient is n times faster with similar convergence properties.

We’ll conisder it under the standard assumptions that

f is µ-strongly-convex:
E[‖gt‖2] ≤ B2 (finite variance and bounded subgradients).
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Convergence Rate of Stochastic Subgradient

Since function value may not decrease, we analyze distance to x∗:

‖xt − x∗‖2 = ‖(xt−1 − αtgit)− x∗‖2

= ‖(xt−1 − x∗)− αtgit‖2

= ‖xt−1 − x∗‖2 − 2αtg
T
it(x

t−1 − x∗) + α2
t ‖git‖2.

Many analyses of distance to x∗ start this way.

First term is we what we want, we need to bound the second/third terms.
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Convergence Rate of Stochastic Subgradient

Expansion of distance:

‖xt − x∗‖2 = ‖xt−1 − x∗‖ − 2αtg
T
it(x

t−1 − x∗) + α2
t ‖git‖2.

Take expectation with respect to it:

E[‖xt − x∗‖2] = E[‖xt−1 − x∗‖]− 2αtE[gTit(x
t−1 − x∗)] + α2

tE[‖git‖2]
‖xt−1 − x∗‖2 − 2αtE[gTit ](x

t−1 − x∗) + α2
tE[‖git‖2]

≤ ‖xt−1 − x∗‖2 − 2αtg
T
t (xt−1 − x∗) + α2

tB
2.

Using strong-convexity inequality,

(gt − 0)T (xt−1 − x∗) ≥ µ‖y − x‖2,
gives

E[‖xt − x∗‖2] ≤ ‖xt−1 − x∗‖2 − 2αtµ‖xt−1 − x∗‖2 + α2
tB

2

= (1− 2αtµ)‖xt−1 − x∗‖2 + α2
tB

2.
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Stochastic Gradient with Constant Step Size

Our bound on expected distance:

E[‖xt − x∗‖2] ≤ (1− 2αtµ)‖xt−1 − x∗‖2 + α2
tB

2.

If αt is small enough, shows distance to solution decreases.

Taking full expectation and applying recursively with constant αt = α gives:

E[‖xt − x∗‖2] ≤ (1− 2αµ)t‖x0 − x∗‖2 +
αB2

2µ
,

after some of math (last term comes from bounding a geometric series).

First term looks like linear convergence, but second term does not go to zero.
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Stochastic Gradient with Decreasing Step Size

To get convergence, we need a decreasing step size.

Region that we converge to shrinks over time.
But it can’t shrink too quickly or we may never reach x∗.

Classic approach is to choose αt such that

∞∑

t=1

αt =∞,
∞∑

t=1

α2
t <∞,

which suggests setting αt = O(1/t).
We can obtain convergence rates with decreasing steps:

If αt = 1
µt

we can show

E[f(x̄t)− f(x∗)] = O(log(t)/t) (non-smooth f)

= O(1/t) (smooth f)

for the average iteration x̄t = 1
k

∑T
k=1 xk−1.

Note that O(1/t) error implies O(1/ε) iterations required.
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(pause)
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What is the best subgradient?

We analyzed the subgradient method,

xt+1 = xt − αtgt, where gt ∈ ∂f(xt),

under any choice of subgradient.

But what is the “best” subgradient to use?

Convex functions have directional derivatives everywhere.
Direction −zt that minimizes directional derivative is minimum-norm subgradient,

zt = argmin
z∈∂f(xt)

||z||

This is the steepest descent direction for non-smooth convex optimization problems.
You can compute this for L1-regularization, but not many other problems.
Basis for best L1-regularization methods, combined (carefully) with Newton.
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Stochastic Subgradient with Sparse Features

For many datasets, our feature vectors xi are very sparse:
“CPSC “Expedia” “vicodin” <recipient name> . . .

1 0 0 0 . . .
0 1 0 0 . . .
0 0 1 0 . . .
0 1 0 1 . . .
1 0 1 1 . . .

Consider case where d is huge but each row xi has at most k non-zeroes:

The O(d) cost of stochastic subgradient might be too high.
We can often modify stochastic subgradient to have O(k) cost.



Stochastic Subgradient Convergence Rate of SSG Practical Subgradient Methods Stochastic Average Gradient Infinite Data Sets

Digression: Operations on Sparse Vectors

Consider a vector g ∈ Rd with at most k non-zeroes:

gT =
[
0 0 0 1 2 0 −0.5 0 0 0

]
.

If k << d, we can store the vector using O(k) storage instead of O(d):

Store the non-zero values:

gTvalue =
[
1 2 −0.5

]
.

Store a pointer to where the non-zero values go:

gTpoint =
[
4 5 7

]
.

With this representation, we can do standard vector operations in O(k):

Compute αg in O(k) by computing αgvalue.
For dense w, set w = (w− g) in O(k) by subracting gvalue from w at positions gpoint
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Stochastic Subgradient with Sparse Features

Consider optimizing the hinge-loss,

argmin
w∈Rd

1

n

n∑

i=1

max{0, 1− yi(wTxi)},

when d is huge but each row has at most k non-zeroes.

A stochastic subgradient method could use

wt+1 = wt − αtgit , where gi =

{
−yixi if 1− yi(wTxi) > 0

0 otherwise

Notice that git has at most k non-zeroes:

Computing αtgit costs O(k): multiply αt by non-zeroes.
Computing wt − αtgit costs O(k): subtract non-zeroes.

So stochastic subgradient is fast if k is small even if d is large.
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Stochastic Subgradient with Sparse Features

Consider the L2-regularized hinge-loss in the same setting,

argmin
w∈Rd

1

n

n∑

i=1

max{0, 1− yi(wTxi)}+
λ

2
‖w‖2,

using a stochastic subgradient method,

wt+1 = wt − αtgit − αtλwt, where git is same as before

While git has at most k non-zeros, wt could have d non-zeroes:
So adding L2-regularization increases cost from O(k) to O(d)?

To use L2-regularization and keep O(k) cost, re-write iteration as

wt+1 = wt − αtgit − αtλwt
= (1− αtλ)wt︸ ︷︷ ︸

changes scale of wt

− αtgit .︸ ︷︷ ︸
sparse update
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Stochastic Subgradient with Sparse Features
Let’s write the update as two steps

wt+
1
2 = (1− αtλ)wt, wt+1 = wt+

1
2 − αtgit .

We can implement both steps in O(k) if we re-parameterize as

wt = βtvt,

for some scalar βt and vector vt.

For the first step we need

βt+
1
2 vt+

1
2 = (1− αtλ)βtvt,

which we can satisfy in O(1) using βt+
1
2 = (1− αtλ)βt and vt+

1
2 = vt.

For the second step we need

βt+1vt+1 = βt+
1
2 vt+

1
2 − αtgit .

which we can satisfy in O(k) using βt+1 = βt+
1
2 and vt+1 = vt+

1
2 − αt

βt+
1
2
git .
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Stochastic Subgradient with Sparse Features

So we can implement the subgradient method with L2-regularization,

wt+1 = wt − αtgit − αtλwt,

in O(k) by using the wt = βtvt representation and the update

βt+1 = (1− αtλ)βt, vt+1 = vt − αt
βt+1

git .

assuming that computing git can be done in O(k) given βt and vt.

There exists efficient sparse updates in other scenarios too:

Duchi & Singer [2009]: L1-regularization proximal operator (“lazy updates”).
Xu [2010]: L2-regularization and iterate average w̄t.
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Stochastic Subgradient Methods in Practice
Last time we argued that αt must go to zero for convergence.
Theory says using αt = 1/µt and averaging is close to optimal:

Except for some special cases, you should not do this.
Usually µ = O(1/n) or O(1/

√
n) so initial steps are huge.

Later steps are tiny: 1/t gets small very quickly.
Convergence rate slows dramatically if µ isn’t accurate.
No adaptation to “easier” problems than worst case.

Tricks that can improve theoretical and practical properties:
1 Use smaller initial step-sizes, that go to zero more slowly:

αt = γ/
√
t or αt = γ.

2 Take a (weighted) average of the iterations or gradients:

x̄t =
t∑

i=1

ωtz
t,

where ωt is weight at iteration t.
These tricks usually help, but tuning is often required:

stochastic subgradient is not a black box.
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Speeding up Stochastic Subgradient Methods

Results that support using large steps and averaging:

Averaging later iterations achieves O(1/t) in non-smooth case.

Gradient averaging improves constants in analysis.

αt = O(1/tβ) for β ∈ (0.5, 1) more robust than αt = O(1/t).

Constant step size (αt = α) achieves linear rate to accuracy O(α).

In smooth case, iterate averaging is asymptotically optimal:

Achieves same rate as optimal stochastic Newton method.
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Stochastic Newton Methods?

Should we use Nesterov/Newton-like stochastic methods?

These do not improve the O(1/ε) convergence rate.

But some positive results exist.

Improves performance at start or if noise is small.
Newton-like AdaGrad method,

xt+1 = xt + αD∇fit(xt), with Djj =

√√√√
t∑

k=1

‖∇jfik(xt)‖.

improves regret but not optimization error.

Two-phase Newton-like method achieves O(1/ε) without strong-convexity.
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Big-N Problems

Recall our standard optimization framework,

min
x∈Rd

1

n

n∑

i=1

fi(x) + r(x)

data fitting term + regularizer

Stochastic methods:

O(1/t) convergence but requires 1 gradient per iterations.
Rates are unimprovable for general stochastic objectives.

Deterministic methods:

O(ρt) convergence but requires N gradients per iteration.
The faster rate is possible because N is finite.

For minimizing finite sums, can we design a better method?
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Motivation for Hybrid Methods

Stochastic vs. deterministic methods

• Goal = best of both worlds: linear rate with O(1) iteration cost

time

lo
g(

ex
ce
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stochastic

deterministic
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Hybrid Deterministic-Stochastic

Approach 1: control the sample size.

The FG method uses all N gradients,

∇f(xt) =
1

N

N∑

i=1

∇fi(xt).

The SG method approximates it with 1 sample,

∇fit(xt) ≈
1

N

N∑

i=1

∇fi(xt).

A common variant is to use larger sample Bt,

1

|Bt|
∑

i∈Bt
∇fi(xt) ≈

1

N

N∑

i=1

∇fi(xt).
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Approach 1: Batching

The SG method with a sample Bt uses iterations

xt+1 = xt − αt

|Bt|
∑

i∈Bt
fi(x

t).

For a fixed sample size |Bt|, the rate is sublinear.

Gradient error decreases as sample size |Bt| increases.
Common to gradually increase the sample size |Bt|.
[Bertsekas & Tsitsiklis, 1996]

We can choose |Bt| to achieve a linear convergence rate:

Early iterations are cheap like SG iterations.
Later iterations can use a Newton-like method.
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Stochastic Average Gradient

Growing |Bt| eventually requires O(N) iteration cost.

Can we have a rate of O(ρt) with only 1 gradient evaluation per iteration?

YES! The stochastic average gradient (SAG) algorithm:

Randomly select it from {1, 2, . . . , N} and compute f ′it(x
t).

xt+1 = xt − αt

N

N∑
i=1

∇fi(xt)

Memory: yti = ∇fi(xt) from the last t where i was selected.
[Le Roux et al., 2012]

Stochastic variant of increment average gradient (IAG).
[Blatt et al., 2007]

Assumes gradients of non-selected examples don’t change.
Assumption becomes accurate as ||xt+1 − xt|| → 0.
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Convergence Rate of SAG

If each f ′i is L−continuous and f is strongly-convex,
with αt = 1/16L SAG has

E[f(xt)− f(x∗)] 6

(
1−min

{
µ

16L
,

1

8N

})t
C,

where

C = [f(x0)− f(x∗)] +
4L

N
‖x0 − x∗‖2 +

σ2

16L
.

Linear convergence rate but only 1 gradient per iteration.
For well-conditioned problems, constant reduction per pass:

(
1− 1

8N

)N
≤ exp

(
−1

8

)
= 0.8825.

For ill-conditioned problems, almost same as deterministic method (but N times
faster).
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Rate of Convergence Comparison
Assume that N = 700000, L = 0.25, µ = 1/N :

Gradient method has rate
(
L−µ
L+µ

)2
= 0.99998.

Accelerated gradient method has rate
(
1−

√
µ
L

)
= 0.99761.

SAG (N iterations) has rate
(
1−min

{
µ

16L ,
1

8N

})N
= 0.88250.

Fastest possible first-order method:
(√

L−√µ√
L+
√
µ

)2
= 0.99048.

SAG beats two lower bounds:
Stochastic gradient bound (of O(1/t)).
Deterministic gradient bound (for typical L, µ, and N).

Number of f ′i evaluations to reach ε:
Stochastic: O(Lµ (1/ε)).

Gradient: O(N L
µ log(1/ε)).

Accelerated: O(N
√

L
µ log(1/ε)).

SAG: O(max{N, Lµ } log(1/ε)).
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Comparing Deterministic and Stochatic Methods

quantum (n = 50000, p = 78) and rcv1 (n = 697641, p = 47236)
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SAG Compared to FG and SG Methods
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Other Linearly-Convergent Stochastic Methods

Subsequent stochastic algorithms with linear rates:

Stochastic dual coordinate ascent [Shalev-Schwartz & Zhang, 2013]

Incremental surrogate optimization [Mairal, 2013].
Stochastic variance-reduced gradient (SVRG)
[Johnson & Zhang, 2013, Konecny & Richtarik, 2013, Mahdavi et al., 2013, Zhang et al., 2013]

SAGA [Defazio et al., 2014]

SVRG has a much lower memory requirement (later in talk).

There are also projected/proximal/ADMM extensions.
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SAG Implementation Issues

Basic SAG algorithm:

while(1)
Sample i from {1, 2, . . . , N}.
Compute f ′i(x).
d = d− yi + f ′i(x).
yi = f ′i(x).
x = x− α

N d.

Practical variants of the basic algorithm allow:

Regularization.
Sparse gradients.
Automatic step-size selection.

Common to use adaptive step-size procedure to estimate L.

Termination criterion.

Can use ‖xt+1 − xt‖/α = 1
n
d ≈ ‖∇f(xt)‖ to decide when to stop.

Acceleration [Lin et al., 2015].
Adaptive non-uniform sampling [Schmidt et al., 2013].
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Reshuffling and Non-Uniform Sampling

Does re-shuffling and doing full passes work better?

For classic SG: Maybe?

Noncommutative arithmetic-geometric mean inequality conjecture.
[Recht & Ré, 2012]

For SAG: NO.
Performance is intermediate between IAG and SAG.

Can non-uniform sampling help?

For classic SG methods, can only improve constants.
For SAG, bias sampling towards Lipschitz constants Li,

‖∇fi(x)−∇fi(y)‖ ≤ Li‖x− y‖.

improves rate to depend on Lmean instead of Lmax.
(with bigger step size)

Adaptively estimate Li as you go. (see paper/code).
Slowly learns to ignore well-classified examples.
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For SAG: NO.
Performance is intermediate between IAG and SAG.

Can non-uniform sampling help?

For classic SG methods, can only improve constants.
For SAG, bias sampling towards Lipschitz constants Li,

‖∇fi(x)−∇fi(y)‖ ≤ Li‖x− y‖.

improves rate to depend on Lmean instead of Lmax.
(with bigger step size)

Adaptively estimate Li as you go. (see paper/code).
Slowly learns to ignore well-classified examples.



Stochastic Subgradient Convergence Rate of SSG Practical Subgradient Methods Stochastic Average Gradient Infinite Data Sets

Reshuffling and Non-Uniform Sampling

Does re-shuffling and doing full passes work better?
For classic SG: Maybe?

Noncommutative arithmetic-geometric mean inequality conjecture.
[Recht & Ré, 2012]
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SAG with Adaptive Non-Uniform Sampling

protein (n = 145751, p = 74) and sido (n = 12678, p = 4932)
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Datasets where SAG had the worst relative performance.
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SAG with Non-Uniform Sampling
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Adaptive non-uniform sampling helps a lot.
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SAG with Mini-Batches

Reasons to use mini-batches with SAG:
1 Parallelize gradient calculation.
2 Decrease memory (only store gradient of the mini-batch).

3 Increase convergence rate.
(classic SG methods: only changes constant)

Convergence rate depends on L for mini-batches:

L(B) ≤ L(i), possibly by up to |B|.
Allows bigger step-size, α = 1/L(B).
Place examples in batches to make L(B) small.
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Minimizing Finite Sums: Dealing with the Memory

A major disadvantage of SAG is the memory requirement.

Besides mini-batches, structure in objective may avoid this:
For linear models where fi(w) = g(wTxi), then only require O(n) memory:

∇fi(w) = g′(wTxi)︸ ︷︷ ︸
scalar

xi︸︷︷︸
data

.

For CRFs, only need to store marginals of parts.
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(optical character and named-entity recognition tasks)

If the above don’t work, use SVRG...
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Stochastic Variance-Reduced Gradient

SVRG algorithm:

Start with x0
for s = 0, 1, 2 . . .

ds = 1
N

∑N
i=1 f

′
i(xs)

x0 = xs

for t = 1, 2, . . .m

Randomly pick it ∈ {1, 2, . . . , N}
xt = xt−1 − αt(f ′it(x

t−1)− f ′it(xs) + ds).

xs+1 = xt for random t ∈ {1, 2, . . . ,m}.
Requires 2 gradients per iteration and occasional full passes,
but only requires storing ds and xs.

Practical issues similar to SAG (acceleration versions, automatic step-size/termination,
handles sparsity/regularization, non-uniform sampling, mini-batches).
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(pause)
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Stochastic Subgradient for Infinite Datasets?

In analysis of stochastic subgradient, two assumptions on git :

Unbiased approximation of subgradient: E[git ] = gt.
Variance is bounded: E[‖git‖2] ≤ B2.

Unlike SAG, stochastic subgradient applies to general stochastic optimization:

argmin
x∈Rd

E[fi(x)].

We can use stochastic subgradient on IID samples from infinite dataset:

O(1/ε) rate still applies.
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Stochastic vs. Deterministic for Stochastic Objectives

Consider smooth/strongly-convex stochastic objectives,

min
x∈RD

E[fi(x)],

including the generalization error in machine learning.

Error ε has two parts [Bottou & Bousquet, 2007]:

ε = (optimization error) + (estimation error).

(for generalization error, also have model error)
Consider two strategies:

Generate t samples, then minimize exactly (ERM):
Optimization error = 0.
Estimation error = Õ(1/t).

Or just applying stochastic gradient as we go:
Optimization error = O(1/t).
Estimation error = Õ(1/t).
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Or just applying stochastic gradient as we go:
Optimization error = O(1/t).
Estimation error = Õ(1/t).
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Stochastic vs. Deterministic for Stochastic Objectives

So just go through your data once with stochastic gradient?

“overwhelming empirical evidence shows that for almost all actual data, the ERM
is better. However, we have no understanding of why this happens”

[Srebro & Sridharan, 2011]

Constants matter in learning:

SG optimal in terms of sample size.
But not other quantities: L, µ, x0.
We care about multiplying test error by 2!

Growing-batch deterministic methods [Byrd et al., 2011].

Or take t iterations of SAG on fixed N < t samples.

Optimization accuracy decreases to O(ρt).
Estimation accuracy increases to Õ(1/N).

SAG obtains better bounds for difficult optimization problems.
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Streaming SVRG

Streaming SVRG algorithm [Frostig et al., 2015]:

Start with x0 and initial sample size N

for s = 0, 1, 2 . . .

ds = 1
N

∑N
i=1 f

′
i(xs) for N fresh samples.

x0 = xs
for t = 1, 2, . . .m

Randomly pick 1 fresh sample.
xt = xt−1 − αt(f ′it(x

t−1)− f ′it(xs) + ds).

xs+1 = xt for random t ∈ {1, 2, . . . ,m}.
Increase samples size N .

Streaming SVRG is optimal in non-asymptotic regime.

Same variance as ERM (only true for avg(SG) asymptotically).

Second-order methods are not necessary.
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Constant-Step SG under Strong Assumptions

We can beat O(1/t) under stronger assumptions.

E.g., Schmidt & Le Roux [2013],

‖f ′i(x)‖ ≤ B‖f ′(x)‖.

Crazy assumption: assumes x∗ minimizes fi.

With αt = 1
LB2 , stochastic gradient has

E[f(xt)]− f(x∗) ≤
(

1− µ

LB2

)t
[f(x0)− f(x∗)].

If you expect to over-fit, maybe constant αt is enough?
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Online Convex Optimization

What if data is not IID?

Addressed by online convex optimization (OCO) framework:
[Zinkevich, 2003]

At time t, make a prediction xt.
Receive arbitrary convex loss ft.

OCO analyzes regret,
t∑

k=1

ft(x
t)− ft(x∗),

comparing vs. best fixed x∗ for any sequence {ft}.
SG-style methods achieve optimal O(

√
t) regret.

Strongly-convex losses: O(log(t)) regret [Hazan et al., 2006].

Variants exist see features first [Cesa-Bianchi et al., 1993.

Bandit setting: no gradients.
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Summary

Subgradients: generalize gradients for non-smooth convex functions.

Subgradient method: optimal but very-slow general non-smooth method.

Stochastic subgadient method: same rate but n times cheaper.

Constant step-size: subgradient quickly converges to approximate solution.

Decreasing step-size: subgradient slowly converges to exact solution.

Practical stochastic subgradient methods:

Tricks like βtvt allow training on huge sparse datasets.
Different step-size strategies and averaging significantly improve performance.

Stochastic average gradient: O(log(1/ε)) iterations with 1 gradient per iteration.

Infinite Training Sets can be used with stochastic subgradient.

But recent results indicate it’s sometimes better to apply SAG to finite sample.

Next time: how to use (some) infinite sets of features.
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