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Last Time: Projected-Gradient
@ We can convert the non-smooth problem
argmin f(z) + A [|zgll2,
xERA geq

into a smooth problem with simple constraints:

argmin f(x) + A Z g, subject to ry > [|a4||2 for all g.
z€R4 geqG
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Last Time: Projected-Gradient
@ We can convert the non-smooth problem
argmin f(z) + A [|zgll2,
xERA geq

into a smooth problem with simple constraints:

argmin f(x) + A Z g, subject to ry > [|a4||2 for all g.
z€R4 geqG

@ With simple constraints, we can use projected-gradient:
: L
o = argmin { (a") + V) =)+ 5y -
yeC 2

or equivalently projection applied to gradient step:

2™ = argmin {|ly — 27|}, where 2’ = &' — a1V /(a").
ye

gradient step

projection of ztGD onto C



Projected-Gradient Proximal-Gradient Other Proximal Methods

Last Time: Projected-Gradient

t+

2" = argmin { ||y — 2{P ||}, where 2{P = 2t — 0,V f(2').
yeC N————

~ gradient step
projection of xtGD onto C

f(x)
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Last Time: Projected-Gradient

@ We can convert non-smooth problem into smooth problems with simple
constraints:
@ But transforming might make problem harder:

e E.g., transformed problems often lose strong-convexity.

@ Can we apply a method like projected-gradient to the original problem?
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Gradient Method

@ We want to solve a smooth optimization problem:

argmin f(x).

reR4

! minimizes with quadratic approximation to ‘f’:

Fl) ~ @)+ V(o) + Sy — )P,

@ lteration z

ot = argmin { (') + V- )+ 5l -

yeRd
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Gradient Method

@ We want to solve a smooth optimization problem:

argmin f(x).

reR4

! minimizes with quadratic approximation to ‘f’:

F) = Fa) + V) (0~ )+ 2y — ],

@ lteration z

ot = argmin { (') + V- )+ 5l -

y€eRd
We can equivalently write this as the quadratic optimization:
) 1
2z = argmin {QHy — (2! - atVf(xt))H2} ,
yER4

and the solution is the gradient algorithm:

ot =2 — , Vf(2h).



Projected-Gradient

Proximal-Gradient Method

@ We want to solve a smooth plus non-smooth optimization problem:

argmin f(x)+r(z).
zER?

! minimizes with quadratic approximation to ‘f’:

F) = Fa) + V) (0~ )+ 2y — ],

@ lteration z

ot = argmin { (') + V- )+ 5l -

y€eRd
We can equivalently write this as the quadratic optimization:
) 1
2z = argmin {2\@ — (2! - atVf(xt))H2} ,
yER4

and the solution is the gradient algorithm:

ot =2 — , Vf(2h).
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Proximal-Gradient Method
@ We want to solve a smooth plus non-smooth optimization problem:

argmin f(x)+r(x).
z€R4

@ Iteration x! minimizes with quadratic approximation to ‘f’:

F) () ~ Fat) + V1 (- o)+ 2y — 2P 4r),

. L

ot = argmin { 1) 4 V)T (= )+ Gy~ P00}
yeRd 2

We can equivalently write this as the quadratic optimization:

.1
2z = argmin {2\@ — (2! - atVf(xt))H2} ,
yER4
and the solution is the gradient algorithm:
o =gt — o, Vf(2h).
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Proximal-Gradient Method
@ We want to solve a smooth plus non-smooth optimization problem:

argmin f(x)+r(x).
z€R4

@ Iteration x! minimizes with quadratic approximation to ‘f’:

F)r() ~ £t + V7@ - o)+ 5y — P4,

. L
ot = argmin { 1) 4 V)T (= )+ Gy~ P00}

yeRd 2
We can equivalently write this as the proximal optimization:

) 1
o = argmin {51l (o'~ e AP uro) |
yeRd 2
and the solution is the gradient algorithm:
ot =gt — o, Vf(2h).
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Proximal-Gradient Method
@ We want to solve a smooth plus non-smooth optimization problem:

argmin f(x)+r(x).
z€R4

@ Iteration x! minimizes with quadratic approximation to ‘f’:

F)r() ~ £t + V7@ - o)+ 5y — P4,

. L
ot = argmin { 1) 4 V)T (= )+ Gy~ P00}

yeRd 2
We can equivalently write this as the proximal optimization:

1

o = argmin {51l (o'~ e AP uro) |
yER4

and the solution is the proximal-gradient algorithm:

2 = prox,, [¢! — a; V f(2!)].
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Proximal-Gradient Method

@ So proximal-gradient step takes the form:
ofP =a' — oy Vf(a'),

. 1
' = argmin {2Hy — :UtGDH2 + oztr(y)} )
y€ER4

@ Second part is called the proximal operator with respect to ayr.

@ Convergence rates are still the same as for minimizing f alone:

o E.g, if Vf is L-Lipschitz, f is pu-strongly convex.and g is convex, then

P~ Fat) < (1= 2) [F@a®) - Fa)),

L
where F(z) = f(z) + r(z).

Other Proximal Methods
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Proximal Operator, Iterative Soft Thresholding

@ The proximal operator is the solution to

1
prox,.[z] = argmin §||?J — LE||2 +7(y).
yER4
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Proximal Operator, Iterative Soft Thresholding

@ The proximal operator is the solution to

1
pros, [r] = argmin L [y — al[> + r(y).
yER4

o If r(y) = ayA||y||l1, proximal operator is soft-threshold:
o Apply z; =sign(z;) max{0, |z;| — au A} element-wise.
o Eg,ifapr=1:
Input Threshold Soft-Threshold

0.6715
—1.2075
0.7172
1.6302
0.4889
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Proximal Operator, Iterative Soft Thresholding

@ The proximal operator is the solution to
.1 2
prox,[a] = argmin [y — > + r(y).
yER4

o If r(y) = ayA||y||l1, proximal operator is soft-threshold:

o Apply z; =sign(z;) max{0, |z;| — au A} element-wise.
o Eg,ifapr=1:

Input Threshold Soft-Threshold
0.6715 0
—1.2075 —1.2075
0.7172 0
1.6302 1.6302

0.4889 0
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Proximal Operator, Iterative Soft Thresholding

@ The proximal operator is the solution to
.1 2
prox,[a] = argmin [y — > + r(y).
yER4

o If r(y) = ayA||y||l1, proximal operator is soft-threshold:

o Apply z; =sign(z;) max{0, |z;| — au A} element-wise.
o Eg,ifapr=1:

Input Threshold Soft-Threshold
0.6715 0 0
—1.2075 —1.2075 —0.2075
0.7172 0 0
1.6302 1.6302 0.6302

0.4889 0 0
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Special case of Projected-Gradient Methods

@ Projected-gradient methods are another special case:

0 if C
r(y) = 1 ve , (indicator function for convex set C)
oo ifxégC
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Special case of Projected-Gradient Methods

@ Projected-gradient methods are another special case:

0 if C
r(y) = 1 ve , (indicator function for convex set C)
oo ifxégC

gives

t+1

o1 9 o1 9 )
2 =argmin =||ly — z||* + r(y) = argmin =||y — z||* = argmin ||y — ||
2 yeC 2 yeC

y€ER4
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Proximal-Gradient for Group L1-Regularization

@ The proximal operator for L1-regularization,

. 1
argmin {2||y — JJHZ + Oét/\”yul} )
yER4

applies soft-threshold element-wise,

xj = i max{0, |z;| — azA}.
|1

Other Proximal Methods
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Proximal-Gradient for Group L1-Regularization

@ The proximal operator for L1-regularization,

. 1
argmin {2||y — OCH2 + Oét/\”yHI} )
yER4

applies soft-threshold element-wise,

xj = i max{0, |z;| — azA}.
|z

@ The proximal operator for group L1-regularization,

. 1
argmin §||y—m||2+04t)\ E yll2 ¢,
yGRd geG

applies a group soft-threshold group-wise,

X
2y = 0 max{0, |z |2 — arA}.
EAP

Other Proximal Methods
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Exact Proximal-Gradient Methods

@ We can efficiently compute the proximity operator for:

@ L1-Regularization and most separable regularizers.
@ Group /1-Regularization (disjoint) and most group-separale regularizers.
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Exact Proximal-Gradient Methods

@ We can efficiently compute the proximity operator for:

@ L1-Regularization and most separable regularizers.

@ Group /1-Regularization (disjoint) and most group-separale regularizers.
© Lower and upper bounds.

© Small number of linear constraint.

@ Probability constraints.

@ Many norm balls and norm cones.

@ A few other simple regularizers/constraints.
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Exact Proximal-Gradient Methods

@ We can efficiently compute the proximity operator for:
@ L1-Regularization and most separable regularizers.
@ Group /1-Regularization (disjoint) and most group-separale regularizers.
© Lower and upper bounds.
© Small number of linear constraint.
@ Probability constraints.
@ Many norm balls and norm cones.
@ A few other simple regularizers/constraints.

@ Can solve these non-smooth problems as fast as smooth problems.

@ But what if we can’t efficiently compute proximal operator?
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Inexact Proximal-Gradient Methods

@ We can efficiently approximate the proximal operator for:
Overlapping group L1-regularization.

Total-variation regularization.

Nuclear-norm regularization.

Sums of ‘simple’ functions (proximal-Dykstra).
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Inexact Proximal-Gradient Methods

@ We can efficiently approximate the proximal operator for:
e Overlapping group L1-regularization.
e Total-variation regularization.
e Nuclear-norm regularization.
o Sums of ‘simple’ functions (proximal-Dykstra).
@ Inexact proximal-gradient methods:
e Use an approximation to the proximal operator.
o If approximation error decreases fast enough, same convergence rate:
o To get O(p') rate, error must be in o(p").
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Discussion of Proximal-Gradient

@ Solution z* is a fixed-point:

x* = prox,,[z* — af(z")], for any «a.
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Discussion of Proximal-Gradient

@ Solution z* is a fixed-point:

x* = prox,,[z* — af(z")], for any «a.

e With ay < 2/L, guaranteed to decrease objective.
e Can still use adaptive step-size to estimate ‘L'.

Other Proximal Methods
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Discussion of Proximal-Gradient
@ Solution z* is a fixed-point:
x* = prox,,[z* — af(z")], for any «a.

e With ay < 2/L, guaranteed to decrease objective.
e Can still use adaptive step-size to estimate ‘L'.

e With any a4, proximal—gradient generates a feasible descent direction:

o If z' = prox,, [z — a;V f(x")], then the step

p =2l (@ -2,

decreases f and satisfies constraints for v; small enough.

Other Proximal Methods
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Discussion of Proximal-Gradient

@ Solution z* is a fixed-point:
x* = prox,,[z* — af(z")], for any «a.

e With ay < 2/L, guaranteed to decrease objective.
e Can still use adaptive step-size to estimate ‘L'.

e With any a4, proximal—gradient generates a feasible descent direction:
o If z' = prox,, [z — a;V f(x")], then the step

p =2l (@ -2,
decreases f and satisfies constraints for v; small enough.
@ If proximal operator is expensive, can do Armijo line-search for ~; instead of «y:
e Fix a; and decrease ~y;: “backtracking along the feasible direction”.
@ lterations tend to be in interior.
e Fix 74 and decrease «a;: “backtracking along the projection arc”.
@ lterations tend to be at boundary.
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Faster Proximal-Gradient Methods

@ Accelerated proximal-gradient method:

= pI"OXatT[yt - Othf(itt)]

g+l = ot 1 Bzt — ).

xT

e Convergence properties same as smooth version.
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Faster Proximal-Gradient Methods

@ Accelerated proximal-gradient method:

t+1

T = proxaw[yt — oV f(zh)

g+l = ot 1 Bzt — ).

e Convergence properties same as smooth version.

@ The naive Newton-like methods,
2 = prox,, [¢* — ayd!], where d’ solves V2 f(z!)d!

does NOT work.

Other Proximal Methods

Vi),
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Proximal-Gradient

Naive Projected-Newton

A4

Feasible Set

Other Proximal Methods
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Naive Projected-Newton

Feasible Set
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Naive Projected-Newton

Feasible Set
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Naive Projected-Newton

Q(x)

xk - aHl

N

Feasible Set

A 4
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Naive Projected-Newton

Feasible Set
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Projected-Newton Method

@ Projected-gradient minimizes quadratic approximation,

1
7 = argmin { 1(a1) + 1) — 2" + 5y — P}
yeC 26%15
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Projected-Newton Method

@ Projected-gradient minimizes quadratic approximation,

. 1
ot = argmin { 1) 4 V)~ )+ 50l o'

yel (e
@ Newton's method can be viewed as quadratic approximation (wth H! ~ V2 f(x!)):

ot = argmin { 7) 4 V1)~ )+ 50— 2O (- )}
yeR (677
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Projected-Newton Method

@ Projected-gradient minimizes quadratic approximation,

. 1
ot = argmin { 1) 4 V)~ )+ 50l o'

yel (e
@ Newton's method can be viewed as quadratic approximation (wth H! ~ V2 f(x!)):

H1  argmin {f(xt) VI — )+ (- o) H (y — xt>} |

T
yeRd 2th

@ Projected Newton minimizes constrained quadratic approximation:

o = argmin { /) + V)0~ )+ o0 — 2O (- )}
yeC 20
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Projected-Newton Method

Projected-gradient minimizes quadratic approximation,

1
7 = argmin { 1(a1) + 1) — 2" + 5y — P}
yeC 20&15

Newton's method can be viewed as quadratic approximation (wth H ~ V2 f(x?)):

1 = angnin { (0 + V)0~ 2') + 5o (- 2V~ 2.
yeRd t

X

Projected Newton minimizes constrained quadratic approximation:

o = argmin { /) + V)0~ )+ o0 — 2O (- )}
yeC 20

Equivalently, we project Newton step under different Hessian-defined norm,

21 = argmin|ly — (a* — aq[HY) 9 1 (@)] 1
yeC

where general “quadratic norm” is ||z||a = V2T Az for A = 0.



Projected-Gradient Proximal-Gradient Other Proximal Methods

Discussion of Proximal-Newton

@ Proximal-Newton is defined similarly,

7! = argmin {fw) LS -2 + = a)H ”Ct”’”(y)} |

@ But this is expensive even when 7 is simple.
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Discussion of Proximal-Newton

@ Proximal-Newton is defined similarly,

7! = argmin {f(:st) LS -2 + = a)H ”ft)”(y)} |

@ But this is expensive even when 7 is simple.
@ There are a variety of practical ways to approximate this:

o Use Barzilai-Borwein or diagonal H®.

e Two-metric projection: special method for separable 7.

e Inexact proximal-Newton: solve the above approximately.
o Useful when f is very expensive but 7 is simple.
o "“Costly functions with simple regularizers”.
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Alternating Direction Method of Multipliers

@ Alernating direction method of multipliers (ADMM) solves:

i f (@) +7(y).

@ Alternate between prox-like operators with respect to f and 7.
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Alternating Direction Method of Multipliers

@ Alernating direction method of multipliers (ADMM) solves:

i f (@) +7(y).

@ Alternate between prox-like operators with respect to f and 7.

@ Can introduce constraints to convert to this form:

mxin f(Az) +r(z) <« H_lijl f(@) +r(y),
a=Ay
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Alternating Direction Method of Multipliers

@ Alernating direction method of multipliers (ADMM) solves:

i f (@) +7(y).

@ Alternate between prox-like operators with respect to f and 7.

@ Can introduce constraints to convert to this form:

mxin f(Az) +r(z) <« H_lijl f(@) +r(y),
a=Ay

min f(z) +7(Ba) & min f(z) +r(y).
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Alternating Direction Method of Multipliers

Alernating direction method of multipliers (ADMM) solves:

Awrg;:c f(@) +r(y).

Alternate between prox-like operators with respect to f and 7.

Can introduce constraints to convert to this form:

mxin f(Az) +r(z) <« H_lijl f(@) +r(y),
a=Ay

min f(z) +7(Ba) & min f(z) +r(y).

If prox can not be computed exactly: Linearized ADMM.



Projected-Gradient Proximal-Gradient Other Proximal Methods

Frank-Wolfe Method
@ In some cases the projected gradient step

1
ot = argmin { 1(a) + V1) (0~ ') + 5l -}
yeC 201

may be hard to compute.
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Frank-Wolfe Method
@ In some cases the projected gradient step

. 1
ot = argmin { (") + V- )+ 5l o).
yel Qg
may be hard to compute.
@ Frank-Wolfe method simply uses:
o1 — argmin { £(a) + V() (y - a")}
yeC
requires compact C, takes convex combination of x! and z!*!.

@ O(1/t) rate for smooth convex objectives, some linear convergence results for
strongly-convex [Jaggi, 2013].
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Summary

@ No black-box method can beat subgradient methods

@ For most objectives, you can beat subgradient methods.
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@ No black-box method can beat subgradient methods

@ For most objectives, you can beat subgradient methods.

Proximal-Gradient

Summary

@ You just need a long list of tricks:

Smoothing.
Chambolle-Pock.
Projected-gradient.
Two-metric projection.
Proximal-gradient.
Proximal-Newton.
ADMM

Frank-Wolfe.

Mirror descent.

Incremental surrogate optimization.

Solving smooth dual.

Other Proximal Methods
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Summary

Group L1-Regularization: encourages sparsity in variable groups.
Structured sparsity: encourages other patterns in variables.
Projected-Gradient: allows optimization with simple constraints.
Proximal-gradient: linear rates for sum of smooth and non-smooth.

Proximal-Newton: even faster rates in special cases.

Next time: faster stochastic methods, and kernels for exponential /infinite bases.
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