SVAN 2016 Mini-Course

Stochastic Convex Optimization Methods in Machine Learning

Mark Schmidt

University of British Columbia, May 2016

www.cs.ubc.ca/~schmidtm/SVAN16

• We can convert the non-smooth problem

$$\underset{x \in \mathbb{R}^d}{\operatorname{argmin}} \, f(x) + \lambda \sum_{g \in G} \|x_g\|_2,$$

into a smooth problem with simple constraints:

$$\underset{x \in \mathbb{R}^d}{\operatorname{argmin}} f(x) + \lambda \sum_{g \in G} r_g, \text{ subject to } r_g \geq \|x_g\|_2 \text{ for all } g.$$

• We can convert the non-smooth problem

$$\underset{x \in \mathbb{R}^d}{\operatorname{argmin}} f(x) + \lambda \sum_{g \in G} ||x_g||_2,$$

into a smooth problem with simple constraints:

$$\underset{x \in \mathbb{R}^d}{\operatorname{argmin}} \, f(x) + \lambda \sum_{g \in G} r_g, \text{ subject to } r_g \geq \|x_g\|_2 \text{ for all } g.$$

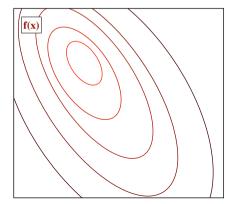
• With simple constraints, we can use projected-gradient:

$$\boldsymbol{x}^{t+1} = \operatorname*{argmin}_{\boldsymbol{y} \in C} \left\{ f(\boldsymbol{x}^t) + \nabla f(\boldsymbol{x}^t)^T (\boldsymbol{y} - \boldsymbol{x}^t) + \frac{L}{2} \|\boldsymbol{y} - \boldsymbol{x}^t\|^2 \right\},$$

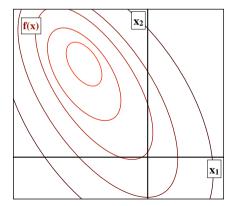
or equivalently projection applied to gradient step:

$$x^{t+1} = \underset{y \in C}{\operatorname{argmin}} \left\{ \|y - x_t^{GD}\| \right\}, \text{ where } x_t^{GD} = \underbrace{x^t - \alpha_t \nabla f(x^t)}_{\text{gradient step}}.$$

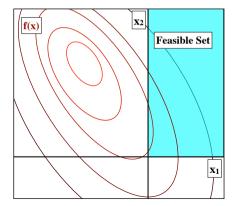
$$x^{t+1} = \underbrace{\operatorname{argmin}_{y \in C} \left\{ \|y - x_t^{GD}\| \right\}, \text{ where } x_t^{GD} = \underbrace{x^t - \alpha_t \nabla f(x^t)}_{\text{gradient step}}.$$



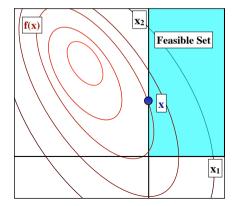
$$x^{t+1} = \underbrace{\operatorname{argmin}_{y \in C} \left\{ \|y - x_t^{GD}\| \right\}, \text{ where } x_t^{GD} = \underbrace{x^t - \alpha_t \nabla f(x^t)}_{\text{gradient step}}.$$



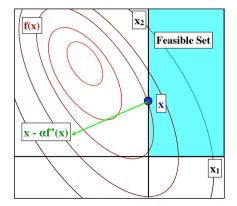
$$x^{t+1} = \underbrace{\operatorname{argmin}_{y \in C} \left\{ \|y - x_t^{GD}\| \right\}, \text{ where } x_t^{GD} = \underbrace{x^t - \alpha_t \nabla f(x^t)}_{\text{gradient step}}.$$



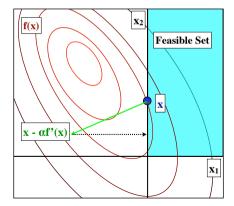
$$x^{t+1} = \underbrace{\operatorname{argmin}_{y \in C} \left\{ \|y - x_t^{GD}\| \right\}, \text{ where } x_t^{GD} = \underbrace{x^t - \alpha_t \nabla f(x^t)}_{\text{gradient step}}.$$



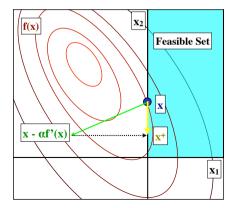
$$x^{t+1} = \underbrace{\operatorname{argmin}_{y \in C} \left\{ \|y - x_t^{GD}\| \right\}, \text{ where } x_t^{GD} = \underbrace{x^t - \alpha_t \nabla f(x^t)}_{\text{gradient step}}.$$



$$x^{t+1} = \underbrace{\operatorname{argmin}_{y \in C} \left\{ \|y - x_t^{GD}\| \right\}, \text{ where } x_t^{GD} = \underbrace{x^t - \alpha_t \nabla f(x^t)}_{\text{gradient step}}.$$



$$x^{t+1} = \underbrace{\operatorname{argmin}_{y \in C} \left\{ \|y - x_t^{GD}\| \right\}, \text{ where } x_t^{GD} = \underbrace{x^t - \alpha_t \nabla f(x^t)}_{\text{gradient step}}.$$



- We can convert non-smooth problem into smooth problems with simple constraints:
- But transforming might make problem harder:
 - E.g., transformed problems often lose strong-convexity.
- Can we apply a method like projected-gradient to the original problem?

Gradient Method

• We want to solve a smooth optimization problem:

$$\underset{x \in \mathbb{R}^d}{\operatorname{argmin}} f(x).$$

• Iteration x^t minimizes with quadratic approximation to 'f':

$$\begin{split} f(y) &\approx f(x^t) + \nabla f(x^t)^T (y - x^t) + \frac{L}{2} \|y - x^t\|^2, \\ x^{t+1} &= \operatorname*{argmin}_{y \in \mathbb{R}^d} \left\{ f(x^t) + \nabla f(x^t)^T (y - x^t) + \frac{L}{2} \|y - x^t\|^2 \right\}. \end{split}$$

Gradient Method

• We want to solve a smooth optimization problem:

$$\underset{x \in \mathbb{R}^d}{\operatorname{argmin}} f(x).$$

• Iteration x^t minimizes with quadratic approximation to 'f':

$$\begin{split} f(y) &\approx f(x^t) + \nabla f(x^t)^T (y-x^t) + \frac{L}{2} \|y-x^t\|^2, \\ x^{t+1} &= \operatorname*{argmin}_{y \in \mathbb{R}^d} \left\{ f(x^t) + \nabla f(x^t)^T (y-x^t) + \frac{L}{2} \|y-x^t\|^2 \right\}. \end{split}$$

We can equivalently write this as the quadratic optimization:

$$x^{t+1} = \operatorname*{argmin}_{y \in \mathbb{R}^d} \left\{ \frac{1}{2} \|y - (x^t - \alpha_t \nabla f(x^t))\|^2 \right\},$$

$$x^{t+1} = x^t - \alpha_t \nabla f(x^t).$$

• We want to solve a smooth plus non-smooth optimization problem:

$$\underset{x \in \mathbb{R}^d}{\operatorname{argmin}} f(x) + r(x).$$

• Iteration x^t minimizes with quadratic approximation to 'f':

$$\begin{split} f(y) &\approx f(x^t) + \nabla f(x^t)^T (y - x^t) + \frac{L}{2} \|y - x^t\|^2, \\ x^{t+1} &= \operatorname*{argmin}_{y \in \mathbb{R}^d} \left\{ f(x^t) + \nabla f(x^t)^T (y - x^t) + \frac{L}{2} \|y - x^t\|^2 \right\}. \end{split}$$

We can equivalently write this as the quadratic optimization:

$$x^{t+1} = \underset{y \in \mathbb{R}^d}{\operatorname{argmin}} \left\{ \frac{1}{2} \|y - (x^t - \alpha_t \nabla f(x^t))\|^2 \right\},$$

$$x^{t+1} = x^t - \alpha_t \nabla f(x^t).$$

• We want to solve a smooth plus non-smooth optimization problem:

$$\underset{x \in \mathbb{R}^d}{\operatorname{argmin}} f(x) + r(x).$$

• Iteration x^t minimizes with quadratic approximation to 'f':

$$\begin{split} f(y) + r(y) &\approx f(x^t) + \nabla f(x^t)^T (y - x^t) + \frac{L}{2} \|y - x^t\|^2 + r(y), \\ x^{t+1} &= \operatorname*{argmin}_{y \in \mathbb{R}^d} \left\{ f(x^t) + \nabla f(x^t)^T (y - x^t) + \frac{L}{2} \|y - x^t\|^2 + r(y) \right\}. \end{split}$$

We can equivalently write this as the quadratic optimization:

$$x^{t+1} = \underset{y \in \mathbb{R}^d}{\operatorname{argmin}} \left\{ \frac{1}{2} \|y - (x^t - \alpha_t \nabla f(x^t))\|^2 \right\},$$

$$x^{t+1} = x^t - \alpha_t \nabla f(x^t).$$

• We want to solve a smooth plus non-smooth optimization problem:

$$\underset{x \in \mathbb{R}^d}{\operatorname{argmin}} f(x) + r(x).$$

• Iteration x^t minimizes with quadratic approximation to 'f':

$$\begin{split} f(y) + r(y) &\approx f(x^t) + \nabla f(x^t)^T (y - x^t) + \frac{L}{2} \|y - x^t\|^2 + r(y), \\ x^{t+1} &= \operatorname*{argmin}_{y \in \mathbb{R}^d} \left\{ f(x^t) + \nabla f(x^t)^T (y - x^t) + \frac{L}{2} \|y - x^t\|^2 + r(y) \right\}. \end{split}$$

We can equivalently write this as the proximal optimization:

$$x^{t+1} = \operatorname*{argmin}_{y \in \mathbb{R}^d} \left\{ \frac{1}{2} \|y - (x^t - \alpha_t \nabla f(x^t))\|^2 + \alpha_t r(y) \right\},$$

$$x^{t+1} = x^t - \alpha_t \nabla f(x^t).$$

• We want to solve a smooth plus non-smooth optimization problem:

$$\underset{x \in \mathbb{R}^d}{\operatorname{argmin}} f(x) + r(x).$$

• Iteration x^t minimizes with quadratic approximation to 'f':

$$\begin{split} f(y) + r(y) &\approx f(x^t) + \nabla f(x^t)^T (y - x^t) + \frac{L}{2} \|y - x^t\|^2 + r(y), \\ x^{t+1} &= \operatorname*{argmin}_{y \in \mathbb{R}^d} \left\{ f(x^t) + \nabla f(x^t)^T (y - x^t) + \frac{L}{2} \|y - x^t\|^2 + r(y) \right\}. \end{split}$$

We can equivalently write this as the proximal optimization:

$$x^{t+1} = \operatorname*{argmin}_{y \in \mathbb{R}^d} \left\{ \frac{1}{2} \|y - (x^t - \alpha_t \nabla f(x^t))\|^2 + \alpha_t r(y) \right\},$$

$$x^{t+1} = \operatorname{prox}_{\alpha r}[x^t - \alpha_t \nabla f(x^t)].$$

• So proximal-gradient step takes the form:

$$\begin{split} x_t^{GD} &= x^t - \alpha_t \nabla f(x^t), \\ x^{t+1} &= \operatorname*{argmin}_{y \in \mathbb{R}^d} \left\{ \frac{1}{2} \|y - x_t^{GD}\|^2 + \alpha_t r(y) \right\}. \end{split}$$

- Second part is called the proximal operator with respect to $\alpha_t r$.
- ullet Convergence rates are still the same as for minimizing f alone:
 - E.g., if ∇f is L-Lipschitz, f is μ -strongly convex.and g is convex, then

$$F(x^t) - F(x^*) \le \left(1 - \frac{\mu}{L}\right)^t \left[F(x^0) - F(x^*)\right],$$

where
$$F(x) = f(x) + r(x)$$
.

• The proximal operator is the solution to

$$\operatorname{prox}_r[x] = \underset{y \in \mathbb{R}^d}{\operatorname{argmin}} \ \frac{1}{2} \|y - x\|^2 + r(y).$$

• The proximal operator is the solution to

$$\operatorname{prox}_r[x] = \underset{y \in \mathbb{R}^d}{\operatorname{argmin}} \ \frac{1}{2} \|y - x\|^2 + r(y).$$

- If $r(y) = \alpha_t \lambda ||y||_1$, proximal operator is soft-threshold:
 - Apply $x_j = \operatorname{sign}(x_j) \max\{0, |x_j| \alpha_t \lambda\}$ element-wise.
 - E.g., if $\alpha_t \lambda = 1$:

	•	
Γ	0.6715	
	-1.2075	
	0.7172	
	1.6302	
L	0.4889	

Input

Threshold

Soft-Threshold

• The proximal operator is the solution to

$$\operatorname{prox}_r[x] = \underset{y \in \mathbb{R}^d}{\operatorname{argmin}} \ \frac{1}{2} \|y - x\|^2 + r(y).$$

- If $r(y) = \alpha_t \lambda ||y||_1$, proximal operator is soft-threshold:
 - Apply $x_i = \operatorname{sign}(x_i) \max\{0, |x_i| \alpha_t \lambda\}$ element-wise.
 - E.g., if $\alpha_t \lambda = 1$:

Input	Threshold	Soft-Threshold
$ \begin{bmatrix} 0.6715 \\ -1.2075 \\ 0.7172 \\ 1.6302 \\ 0.4889 \end{bmatrix} $	$\begin{bmatrix} 0 \\ -1.2075 \\ 0 \\ 1.6302 \\ 0 \end{bmatrix}$	

• The proximal operator is the solution to

$$\operatorname{prox}_r[x] = \underset{y \in \mathbb{R}^d}{\operatorname{argmin}} \ \frac{1}{2} \|y - x\|^2 + r(y).$$

- If $r(y) = \alpha_t \lambda ||y||_1$, proximal operator is soft-threshold:
 - Apply $x_i = \operatorname{sign}(x_i) \max\{0, |x_i| \alpha_t \lambda\}$ element-wise.
 - E.g., if $\alpha_t \lambda = 1$:

Input	Threshold	Soft-Threshold
[0.6715]	[0]	[0]
-1.2075	-1.2075	-0.2075
0.7172	0	0
1.6302	1.6302	0.6302
0.4889		

Special case of Projected-Gradient Methods

• Projected-gradient methods are another special case:

$$r(y) = \begin{cases} 0 & \text{if } x \in \mathcal{C} \\ \infty & \text{if } x \notin \mathcal{C} \end{cases}, \quad \text{(indicator function for convex set } \mathcal{C}\text{)}$$

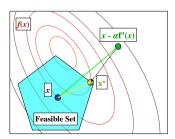
Special case of Projected-Gradient Methods

• Projected-gradient methods are another special case:

$$r(y) = \begin{cases} 0 & \text{if } x \in \mathcal{C} \\ \infty & \text{if } x \notin \mathcal{C} \end{cases}, \quad (\text{indicator function for convex set } \mathcal{C})$$

gives

$$x^{t+1} = \underset{y \in \mathbb{R}^d}{\operatorname{argmin}} \ \frac{1}{2} \|y-x\|^2 + r(y) = \underset{y \in \mathcal{C}}{\operatorname{argmin}} \ \frac{1}{2} \|y-x\|^2 = \underset{y \in \mathcal{C}}{\operatorname{argmin}} \ \|y-x\|.$$



Proximal-Gradient for Group L1-Regularization

• The proximal operator for L1-regularization,

$$\underset{y \in \mathbb{R}^d}{\operatorname{argmin}} \left\{ \frac{1}{2} \|y - x\|^2 + \alpha_t \lambda \|y\|_1 \right\},$$

applies soft-threshold element-wise,

$$x_j = \frac{x_j}{|x_j|} \max\{0, |x_j| - \alpha_t \lambda\}.$$

Proximal-Gradient for Group L1-Regularization

• The proximal operator for L1-regularization,

$$\underset{y \in \mathbb{R}^d}{\operatorname{argmin}} \left\{ \frac{1}{2} \|y - x\|^2 + \alpha_t \lambda \|y\|_1 \right\},\,$$

applies soft-threshold element-wise,

$$x_j = \frac{x_j}{|x_j|} \max\{0, |x_j| - \alpha_t \lambda\}.$$

• The proximal operator for group L1-regularization,

$$\underset{y \in \mathbb{R}^d}{\operatorname{argmin}} \left\{ \frac{1}{2} \|y - x\|^2 + \alpha_t \lambda \sum_{g \in G} \|y\|_2 \right\},$$

applies a group soft-threshold group-wise,

$$x_g = \frac{x_g}{\|x_g\|_2} \max\{0, \|x_g\|_2 - \alpha_t \lambda\}.$$

Exact Proximal-Gradient Methods

- We can efficiently compute the proximity operator for:
 - **1** L1-Regularization and most separable regularizers.
 - **②** Group ℓ_1 -Regularization (disjoint) and most group-separale regularizers.

Exact Proximal-Gradient Methods

- We can efficiently compute the proximity operator for:
 - **1** L1-Regularization and most separable regularizers.
 - **②** Group ℓ_1 -Regularization (disjoint) and most group-separale regularizers.
 - Output
 See The Example 1
 Output
 Description
 Output
 Description
 Description
 - Small number of linear constraint.
 - Probability constraints.
 - Many norm balls and norm cones.
 - A few other simple regularizers/constraints.

Exact Proximal-Gradient Methods

- We can efficiently compute the proximity operator for:
 - **1** L1-Regularization and most separable regularizers.
 - **②** Group ℓ_1 -Regularization (disjoint) and most group-separale regularizers.

 - Small number of linear constraint.
 - Probability constraints.
 - Many norm balls and norm cones.
 - A few other simple regularizers/constraints.
- Can solve these non-smooth problems as fast as smooth problems.
- But what if we can't efficiently compute proximal operator?

Inexact Proximal-Gradient Methods

- We can efficiently approximate the proximal operator for:
 - Overlapping group L1-regularization.
 - Total-variation regularization.
 - Nuclear-norm regularization.
 - Sums of 'simple' functions (proximal-Dykstra).

Inexact Proximal-Gradient Methods

- We can efficiently approximate the proximal operator for:
 - Overlapping group L1-regularization.
 - Total-variation regularization.
 - Nuclear-norm regularization.
 - Sums of 'simple' functions (proximal-Dykstra).
- Inexact proximal-gradient methods:
 - Use an approximation to the proximal operator.
 - If approximation error decreases fast enough, same convergence rate:
 - To get $O(\rho^t)$ rate, error must be in $o(\rho^t)$.

• Solution x^* is a fixed-point:

$$x^* = \text{prox}_{\alpha r}[x^* - \alpha f(x^*)], \text{ for any } \alpha.$$

• Solution x^* is a fixed-point:

$$x^* = \text{prox}_{\alpha r}[x^* - \alpha f(x^*)], \text{ for any } \alpha.$$

- With $\alpha_t < 2/L$, guaranteed to decrease objective.
 - Can still use adaptive step-size to estimate 'L'.

• Solution x^* is a fixed-point:

$$x^* = \text{prox}_{\alpha r}[x^* - \alpha f(x^*)], \text{ for any } \alpha.$$

- With $\alpha_t < 2/L$, guaranteed to decrease objective.
 - Can still use adaptive step-size to estimate 'L'.
- With any α_t , proximal–gradient generates a feasible descent direction:
 - If $\bar{x}^t = \text{prox}_{\alpha_t r}[x^t \alpha_t \nabla f(x^t)]$, then the step

$$x^{t+1} = x^t + \gamma_t(\bar{x}^t - x^t),$$

decreases f and satisfies constraints for γ_t small enough.

• Solution x^* is a fixed-point:

$$x^* = \text{prox}_{\alpha r}[x^* - \alpha f(x^*)], \text{ for any } \alpha.$$

- ullet With $lpha_t < 2/L$, guaranteed to decrease objective.
 - Can still use adaptive step-size to estimate 'L'.
- With any α_t , proximal–gradient generates a feasible descent direction:
 - If $\bar{x}^t = \text{prox}_{\alpha_t r}[x^t \alpha_t \nabla f(x^t)]$, then the step

$$x^{t+1} = x^t + \gamma_t(\bar{x}^t - x^t),$$

decreases f and satisfies constraints for γ_t small enough.

- If proximal operator is expensive, can do Armijo line-search for γ_t instead of α_t :
 - Fix α_t and decrease γ_t : "backtracking along the feasible direction".
 - Iterations tend to be in interior.
 - Fix γ_t and decrease α_t : "backtracking along the projection arc".
 - Iterations tend to be at boundary.

Faster Proximal-Gradient Methods

Accelerated proximal-gradient method:

$$x^{t+1} = \operatorname{prox}_{\alpha_t r} [y^t - \alpha_t \nabla f(x^t)]$$

$$y^{t+1} = x^t + \beta_t (x^{t+1} - x^t).$$

• Convergence properties same as smooth version.

Faster Proximal-Gradient Methods

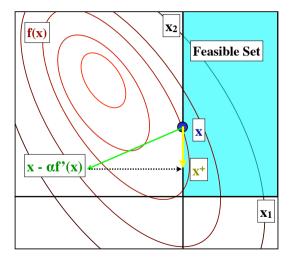
Accelerated proximal-gradient method:

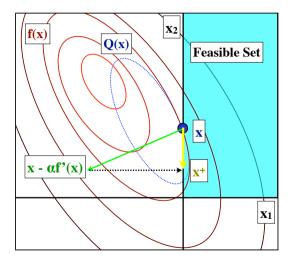
$$x^{t+1} = \operatorname{prox}_{\alpha_t r} [y^t - \alpha_t \nabla f(x^t)]$$
$$y^{t+1} = x^t + \beta_t (x^{t+1} - x^t).$$

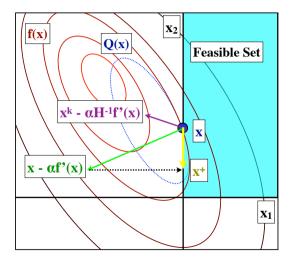
- Convergence properties same as smooth version.
- The naive Newton-like methods,

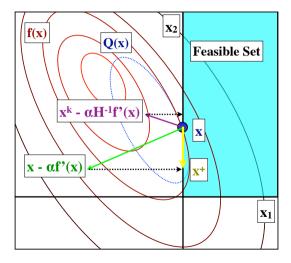
$$x^{t+1} = \operatorname{prox}_{\alpha r}[x^t - \alpha_t d^t], \text{ where } d^t \text{ solves } \nabla^2 f(x^t) d^t = \nabla f(x^t),$$

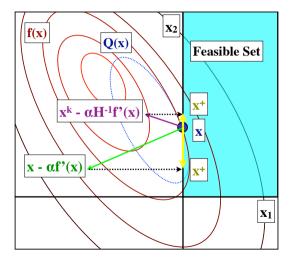
does NOT work.











• Projected-gradient minimizes quadratic approximation,

$$x^{t+1} = \operatorname*{argmin}_{y \in C} \left\{ f(x^t) + \nabla f(x^t)(y - x^t) + \frac{1}{2\alpha_t} \|y - x^t\|^2 \right\}.$$

• Projected-gradient minimizes quadratic approximation,

$$x^{t+1} = \operatorname*{argmin}_{y \in C} \left\{ f(x^t) + \nabla f(x^t)(y - x^t) + \frac{1}{2\alpha_t} \|y - x^t\|^2 \right\}.$$

• Newton's method can be viewed as quadratic approximation (wth $H^t pprox
abla^2 f(x^t)$):

$$x^{t+1} = \operatorname*{argmin}_{y \in \mathbb{R}^d} \left\{ f(x^t) + \nabla f(x^t)(y-x^t) + \frac{1}{2\alpha_t}(y-x^t)H^t(y-x^t) \right\}.$$

• Projected-gradient minimizes quadratic approximation,

$$x^{t+1} = \operatorname*{argmin}_{y \in C} \left\{ f(x^t) + \nabla f(x^t)(y - x^t) + \frac{1}{2\alpha_t} \|y - x^t\|^2 \right\}.$$

• Newton's method can be viewed as quadratic approximation (wth $H^t \approx \nabla^2 f(x^t)$):

$$x^{t+1} = \operatorname*{argmin}_{y \in \mathbb{R}^d} \left\{ f(x^t) + \nabla f(x^t)(y-x^t) + \frac{1}{2\alpha_t}(y-x^t)H^t(y-x^t) \right\}.$$

• Projected Newton minimizes constrained quadratic approximation:

$$x^{t+1} = \operatorname*{argmin}_{y \in C} \left\{ f(x^t) + \nabla f(x^t)(y-x^t) + \frac{1}{2\alpha_t}(y-x^t)H^t(y-x^t) \right\}.$$

• Projected-gradient minimizes quadratic approximation,

$$\boldsymbol{x}^{t+1} = \operatorname*{argmin}_{\boldsymbol{y} \in C} \left\{ f(\boldsymbol{x}^t) + \nabla f(\boldsymbol{x}^t) (\boldsymbol{y} - \boldsymbol{x}^t) + \frac{1}{2\alpha_t} \|\boldsymbol{y} - \boldsymbol{x}^t\|^2 \right\}.$$

• Newton's method can be viewed as quadratic approximation (wth $H^t \approx \nabla^2 f(x^t)$):

$$x^{t+1} = \operatorname*{argmin}_{y \in \mathbb{R}^d} \left\{ f(x^t) + \nabla f(x^t)(y-x^t) + \frac{1}{2\alpha_t}(y-x^t)H^t(y-x^t) \right\}.$$

• Projected Newton minimizes constrained quadratic approximation:

$$x^{t+1} = \operatorname*{argmin}_{y \in C} \left\{ f(x^t) + \nabla f(x^t)(y - x^t) + \frac{1}{2\alpha_t}(y - x^t)H^t(y - x^t) \right\}.$$

• Equivalently, we project Newton step under different Hessian-defined norm,

$$x^{t+1} = \underset{y \in C}{\operatorname{argmin}} \|y - (x^t - \alpha_t [H^t]^{-1} \nabla f(x^t)]\|_{H^t},$$

where general "quadratic norm" is $||z||_A = \sqrt{z^T A z}$ for $A \succ 0$.

Discussion of Proximal-Newton

Proximal-Newton is defined similarly,

$$x^{t+1} = \operatorname*{argmin}_{y \in \mathbb{R}^d} \left\{ f(x^t) + \nabla f(x^t)(y-x^t) + \frac{L}{2}(y-x^t)H^t(y-x^t) + r(y) \right\}.$$

ullet But this is expensive even when r is simple.

Discussion of Proximal-Newton

Proximal-Newton is defined similarly,

$$x^{t+1} = \operatorname*{argmin}_{y \in \mathbb{R}^d} \left\{ f(x^t) + \nabla f(x^t)(y - x^t) + \frac{L}{2}(y - x^t)H^t(y - x^t) + r(y) \right\}.$$

- But this is expensive even when r is simple.
- There are a variety of practical ways to approximate this:
 - Use Barzilai-Borwein or diagonal H^t .
 - Two-metric projection: special method for separable r.
 - Inexact proximal-Newton: solve the above approximately.
 - Useful when f is very expensive but r is simple.
 - "Costly functions with simple regularizers".

• Alernating direction method of multipliers (ADMM) solves:

$$\min_{Ax+By=c} f(x) + r(y).$$

ullet Alternate between prox-like operators with respect to f and r.

• Alernating direction method of multipliers (ADMM) solves:

$$\min_{Ax+By=c} f(x) + r(y).$$

- ullet Alternate between prox-like operators with respect to f and r.
- Can introduce constraints to convert to this form:

$$\min_{x} f(Ax) + r(x) \quad \Leftrightarrow \quad \min_{x = Ay} f(x) + r(y),$$

Alernating direction method of multipliers (ADMM) solves:

$$\min_{Ax+By=c} f(x) + r(y).$$

- ullet Alternate between prox-like operators with respect to f and r.
- Can introduce constraints to convert to this form:

$$\min_{x} f(Ax) + r(x) \quad \Leftrightarrow \quad \min_{x = Ay} f(x) + r(y),$$

$$\min_{x} f(x) + r(Bx) \quad \Leftrightarrow \quad \min_{y=Bx} f(x) + r(y).$$

• Alernating direction method of multipliers (ADMM) solves:

$$\min_{Ax+By=c} f(x) + r(y).$$

- ullet Alternate between prox-like operators with respect to f and r.
- Can introduce constraints to convert to this form:

$$\min_{x} f(Ax) + r(x) \quad \Leftrightarrow \quad \min_{x = Ay} f(x) + r(y),$$

$$\min_{x} f(x) + r(Bx) \quad \Leftrightarrow \quad \min_{y = Bx} f(x) + r(y).$$

• If prox can not be computed exactly: Linearized ADMM.

Frank-Wolfe Method

• In some cases the projected gradient step

$$x^{t+1} = \operatorname*{argmin}_{y \in \mathcal{C}} \left\{ f(x^t) + \nabla f(x^t)^T (y - x^t) + \frac{1}{2\alpha_t} \|y - x^t\|^2 \right\},$$

may be hard to compute.

Frank-Wolfe Method

• In some cases the projected gradient step

$$\boldsymbol{x}^{t+1} = \operatorname*{argmin}_{\boldsymbol{y} \in \mathcal{C}} \left\{ f(\boldsymbol{x}^t) + \nabla f(\boldsymbol{x}^t)^T (\boldsymbol{y} - \boldsymbol{x}^t) + \frac{1}{2\alpha_t} \|\boldsymbol{y} - \boldsymbol{x}^t\|^2 \right\},$$

may be hard to compute.

Frank-Wolfe method simply uses:

$$\boldsymbol{x}^{t+1} = \operatorname*{argmin}_{\boldsymbol{y} \in \mathcal{C}} \left\{ f(\boldsymbol{x}^t) + \nabla f(\boldsymbol{x}^t)^T (\boldsymbol{y} - \boldsymbol{x}^t) \right\},$$

requires compact C, takes convex combination of x^t and x^{t+1} .

• O(1/t) rate for smooth convex objectives, some linear convergence results for strongly-convex [Jaggi, 2013].

Summary

- No black-box method can beat subgradient methods
- For most objectives, you can beat subgradient methods.

Summary

- No black-box method can beat subgradient methods
- For most objectives, you can beat subgradient methods.
- You just need a long list of tricks:
 - Smoothing.
 - Chambolle-Pock.
 - Projected-gradient.

 Translationaria delications
 - Two-metric projection.
 - Proximal-gradient.
 - Proximal-Newton.
 - ADMM
 - Frank-Wolfe.
 - Mirror descent.
 - Incremental surrogate optimization.
 - Solving smooth dual.

Summary

- Group L1-Regularization: encourages sparsity in variable groups.
- Structured sparsity: encourages other patterns in variables.
- Projected-Gradient: allows optimization with simple constraints.
- Proximal-gradient: linear rates for sum of smooth and non-smooth.
- Proximal-Newton: even faster rates in special cases.
- Next time: faster stochastic methods, and kernels for exponential/infinite bases.