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Last Time: L1-Regularization

* We considered regularization by the L1-norm:
ij%@ \C(X> + I/X//,

— Encourages solution x* to be sparse.

e Convex approach to regularization and pruning irrelevant features.
— Not perfect, but very fast.
— Could be used as filter, or to initialize NP-hard solver.

* Non-smooth, but “simple” regularizer allows special methods:

— Coordinate optimization for special ‘t’, separable regularizers (last lecture).
— Proximal-gradient methods for general ‘f” and regularizers (this lecture).



Motivation: Group Sparsity

 More general case: we want sparsity in ‘groups’ of variables.
— E.g., we represent categorical/numeric variables as set of binary variables,

Vancouver

1 0 0 0 1 0
Burnaby 35 0 1 0 0 0 1

Vancouver 28 1 0 0 0 1 0

and we want to select original variables (“city” and “age”)

We can address this problem with group L1-regularization:

— ‘Group’ is all binary variables that came from same original variable.



Group L1-Regularization

* Minimizing a function ‘f" with group L1-regularization:
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* Encourages sparsity in terms of groups ‘g’.
— E.g., if G={{1,2}, {3,4} } then we have:

eyl = Tt + Jore?

Variables x, and x, will either be both zero or both non-zero.
Variables x; and x, will either be both zero or both non-zero.



Group L1-Regularization

* Minimizing a function ‘f" with group L1-regularization:
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* Why is it called group “L1”-regularization?
— If ‘v’ is a vector containing norms of the groups, it’s the L1-norm of ‘v’
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Sparsity from the L2-norm?

* Didn’t we say that sparsity comes from L1-norm and not L2-norm?
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Regularization Paths

* The regularization path is the set of ‘w’ values as ‘A’ varies:
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Regularization Paths

* The regularization path is the set of ‘w’ values as ‘A’ varies:

Regularization Path
I T

i WW\ non — SQ(AQ/{J LQ fqmaqufw\

y()\/\ N/IJ 7L(7 (je?L all e v\laﬂzgcj
\Vartables or pone of Fhem

w coefficients

| 1 | |
11.5 12 12.5 13 14.5 15

Iog2(lambda e \—77
al  pont



Group L1-Regularization

* Minimizing a function ‘f" with group L1-regularization:
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Group L1-Regularization

* Minimizing a function ‘f" with group L1-regularization:
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Group L1-Regularization

* Minimizing a function ‘f" with group L1-regularization:
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Group L1-Regularization

* Minimizing a function ‘f" with group L1-regularization:
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Group L1-Regularization

* Minimizing a function ‘f" with group L1-regularization:
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Other Applications of Group Sparsity
* Recall that multi-class logistic regression uses:
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* We can write our parameters as a matrix:

—
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— |f any element of row is non-zero, we still use feature.
— We need a row of zeroes.
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Other Applications of Group Sparsity

* In multiple regression we have multiple targets y._:

—
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* We can write our parameters as a matrix:
_ ) ) } q
W=l Wy wy owy
& l {L D<— all WWOIWTWS T4 7LL\£5 o
- | [ J C@rfejdoovd ‘f() St

( ) (:) ( ) (°) Om};”q{ WCE@ZW(’.
* To ‘select’ a feature J’, we need ‘w = 0" for all /J'.

* Same pattern also arises in multi-label and multi-task classification.



Structured Sparsity

 There are many other patterns that regularization can encourage:
— Total-variation regularization (‘fused’ LASSO):
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— Encourages consecutive parameters to have same value.
— Often used for time-series data: | - . . : . . . .
— 2D version is popular for image &
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— Can also define for general
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Structured Sparsity

 There are many other patterns that regularization can encourage:

— Nuclear-norm regularization:
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— Encourages parameter matrix to have low-rank representation.

— E.g., consider multi-label classification with huge number of labels.
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Structured Sparsity

 There are many other patterns that regularization can encourage:
— Overlapping Group L1-Regularization:
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— Same as group L1-regularization, but groups overlap.
— Can be used to encourage any intersection-closed sparsity pattern.
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Structured Sparsity

 There are many other patterns that regularization can encourage:
— Overlapping Group L1-Regularization:
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— How does this work?
e Consider the case of two groups {1} and {1,2}:
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Structured Sparsity

* There are many other patterns that regularization can encourage:
— Overlapping Group L1-Regularization:
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— Enforcing convex non-zero patterns:
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Structured Sparsity

 There are many other patterns that regularization can encourage:
— Overlapping Group L1-Regularization:
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— Enforcing convex non-zero patterns
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Structured Sparsity

 There are many other patterns that regularization can encourage:
— Overlapping Group L1-Regularization:
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Fig 9: Power set of the set {1, ..., 4}: in blue, an authorized set of selected subsets.

- E nfo rCI ng a h Iera rC hy: In red, an example of a group used within the norm (a subset and all of its

descendants in the DAG).
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* We only allow w¢ non-zero is w is non-zero for all subsets S’ of S.
* E.g., we only consider w,,; # 0 if we have w;, 20, w53 20, and w,; # 0.
* For certain bases, you can solve this problem in polynomial time.



Fitting Models with Structured Sparsity

Structured sparsity objectives typically have the form:

Argmin L)+ 1)
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It’s the non-differentiable regularizer that leads to the sparsity.

We can’t always apply coordinate descent:
— ‘" might not allow cheap updates.
— r" might not be separable.

But general non-smooth methods have slow O(1/¢) rate.
Are there faster methods for the above structure?



Converting to Constrained Optimization

* Re-write non-smooth problem as constrained problem.

 The problem
min f(x)+ Allx]|1.

is equivalent to the problem:
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* These are smooth objectives with ‘simple’ constraints.
min f(x).
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Optimization with Simple Constraints

* Recall: gradient descent minimizes quadratic approximation:
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Projected-Gradient

ﬁﬂ ) 0(%: L
* This is called projected-gradient: G0 %t _ A VF(xY).
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A set is ‘simple’ if we can efficiently compute projection.
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Discussion of Projected-Gradient

* Convergence rates are the same for projected versions:
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* Having ‘simple’ constraints is as easy as having no constraints.
* We won’t prove these, but some simple properties proofs use:
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“Simple” Convex Sets

Il(

* There are several “simple” sets that allows efficient projection:
— Non-negative constraints (projection sets negative values to 0).

— General lower/upper bounds on variables (projection sets to bound).
— Small number of linear equalities (small linear system).

— Small number of linear inequalities (small quadratic program).

— Probability simplex (non-negative and sum-to-one).

— Many norm-balls and norm-cones (L1, L2, L-).

* Dykstra’s algorithm:
— Compute projection onto intersection of simple sets.



Projected-Gradient for L1-Regularization

We've considered writing our L1-regularization problem

min f(x)+ Al[x||1.
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as a problem with simple constraints: f(x*)[): =)+ 1z (X; w)f)
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But this problem might be hard to solve. cigenalues of 0
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and then applying projected-gradient.

— The transformed problem is never strongly-convex.

Can we develop a method that works with the original problem?



