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Last Time: L1-Regularization

• We considered regularization by the L1-norm:

– Encourages solution x* to be sparse.

• Convex approach to regularization and pruning irrelevant features.

– Not perfect, but very fast.

– Could be used as filter, or to initialize NP-hard solver.

• Non-smooth, but “simple” regularizer allows special methods:

– Coordinate optimization for special ‘f’, separable regularizers (last lecture).

– Proximal-gradient methods for general ‘f’ and regularizers (this lecture).



Motivation: Group Sparsity

• More general case: we want sparsity in ‘groups’ of variables.

– E.g., we represent categorical/numeric variables as set of binary variables,

and we want to select original variables (“city” and “age”)

• We can address this problem with group L1-regularization:

– ‘Group’ is all binary variables that came from same original variable.

Vancouver Burnaby Surrey Age ≤ 20 20 < Age ≤ 30 Age > 30

1 0 0 0 1 0

0 1 0 0 0 1

1 0 0 0 1 0

City Age

Vancouver 22

Burnaby 35

Vancouver 28



Group L1-Regularization

• Minimizing a function ‘f’ with group L1-regularization:

• Encourages sparsity in terms of groups ‘g’.

– E.g., if G = { {1,2}, {3,4} } then we have:

Variables x1 and x2 will either be both zero or both non-zero.
Variables x3 and x4 will either be both zero or both non-zero.



Group L1-Regularization

• Minimizing a function ‘f’ with group L1-regularization:

• Why is it called group “L1”-regularization?

– If ‘v’ is a vector containing norms of the groups, it’s the L1-norm of ‘v’.

• Typical choices of norm:



Sparsity from the L2-norm?

• Didn’t we say that sparsity comes from L1-norm and not L2-norm?

– Yes, but we were using squared L2-norm.



Regularization Paths

• The regularization path is the set of ‘w’ values as ‘λ’ varies:
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Other Applications of Group Sparsity

• Recall that multi-class logistic regression uses:

• We can write our parameters as a matrix:

• To ‘select’ a feature ‘j’, we need ‘wcj = 0’ for all ‘j’.
– If any element of row is non-zero, we still use feature.

– We need a row of zeroes.



Other Applications of Group Sparsity

• In multiple regression we have multiple targets yic:

• We can write our parameters as a matrix:

• To ‘select’ a feature ‘j’, we need ‘wcj = 0’ for all ‘j’.

• Same pattern also arises in multi-label and multi-task classification.



Structured Sparsity

• There are many other patterns that regularization can encourage:

– Total-variation regularization (‘fused’ LASSO):

– Encourages consecutive parameters to have same value.

– Often used for time-series data:

– 2D version is popular for image
denoising.

– Can also define for general
graphs between variables.

http://statweb.stanford.edu/~bjk/regreg/examples/fusedlassoapprox.html



Structured Sparsity

• There are many other patterns that regularization can encourage:

– Nuclear-norm regularization:

– Encourages parameter matrix to have low-rank representation.

– E.g., consider multi-label classification with huge number of labels.

http://statweb.stanford.edu/~bjk/regreg/examples/fusedlassoapprox.html



Structured Sparsity

• There are many other patterns that regularization can encourage:

– Overlapping Group L1-Regularization:

– Same as group L1-regularization, but groups overlap.

– Can be used to encourage any intersection-closed sparsity pattern.

http://arxiv.org/pdf/1109.2397v2.pdf



Structured Sparsity

• There are many other patterns that regularization can encourage:

– Overlapping Group L1-Regularization:

– How does this work?

• Consider the case of two groups {1} and {1,2}:
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Structured Sparsity

• There are many other patterns that regularization can encourage:

– Overlapping Group L1-Regularization:

– Enforcing a hierarchy:

• We only allow wS non-zero is wS’ is non-zero for all subsets S’ of S.

• E.g., we only consider w123 ≠ 0 if we have w12 ≠ 0, w13 ≠ 0, and w23 ≠ 0.

• For certain bases, you can solve this problem in polynomial time.

http://arxiv.org/pdf/1109.2397v2.pdf



Fitting Models with Structured Sparsity

• Structured sparsity objectives typically have the form:

• It’s the non-differentiable regularizer that leads to the sparsity.

• We can’t always apply coordinate descent:

– ‘f’ might not allow cheap updates.

– ‘r’ might not be separable.

• But general non-smooth methods have slow O(1/ε) rate.

• Are there faster methods for the above structure?



Converting to Constrained Optimization

• Re-write non-smooth problem as constrained problem.

• The problem

is equivalent to the problem:

or the problems: 

• These are smooth objectives with ‘simple’ constraints.



Optimization with Simple Constraints

• Recall: gradient descent minimizes quadratic approximation:

• Consider minimizing subject to simple constraints:

• We can re-write this as:



Projected-Gradient

• This is called projected-gradient:

A set is ‘simple’ if we can efficiently compute projection.



Discussion of Projected-Gradient

• Convergence rates are the same for projected versions:

• Having ‘simple’ constraints is as easy as having no constraints.

• We won’t prove these, but some simple properties proofs use:



“Simple” Convex Sets

• There are several “simple” sets that allows efficient projection:

– Non-negative constraints (projection sets negative values to 0).

– General lower/upper bounds on variables (projection sets to bound).

– Small number of linear equalities (small linear system).

– Small number of linear inequalities (small quadratic program).

– Probability simplex (non-negative and sum-to-one).

– Many norm-balls and norm-cones (L1, L2, L∞).

• Dykstra’s algorithm:

– Compute projection onto intersection of simple sets.



Projected-Gradient for L1-Regularization

• We’ve considered writing our L1-regularization problem

as a problem with simple constraints:

and then applying projected-gradient.

• But this problem might be hard to solve.

– The transformed problem is never strongly-convex.

• Can we develop a method that works with the original problem?


