SVAN 2016 Mini Course: Stochastic Convex
Optimization Methods in Machine Learning

Mark Schmidt
University of British Columbia, May 2016
www.cs.ubc.ca/~schmidtm/SVAN16

Last Time: Training vs. Testing

* |n supervised learning we are given a training set X and y.
— But what we care about is test error: are prediction accurate on new data?

* |In order to say anything about new data, need assumptions:
— |ID assumption: training and test data drawn from same distribution.

* Often, we have an explicit test set to approximate test error.

BOﬁO\: l —/r W Q Pre di L7L]Le;f 53‘* /qé@{j 3 é\/O\ {VLCNLE
X7 \/> X?ft’s]l)y(;os‘i’ M oAf \C\-} O(}/? }) = fFQAi(j (}’hoc[«e/) Xﬁe>+> error = D{j.ﬁ\(\/)yteg

* Golden rule: this test set cannot influence training in any way.
— Otherwise, not valid approximation of test error.

Fundamental Trade-Off and Regularization

Bias-variance and other learning theory results to trade-off:

1. How small you can make the training error.
VS.

2. How well training error approximates the test error.
Simple models: high training error but don’t overfit:

Complex models: low training error but overfit.

Regularization: reduces overfitting in complex models.
— Common approach is L2-regularization:

Oirgmin | X =~ v I[* + a1 //2
— Increases training error, but typically decreases test error.

— Increasing number of training examples ‘n’ has a similar effect on trade-off.

Last Time: Logistic Regression

* We considered binary labels y,, and classifying with sign(wx).
— Squared error (Ww'x. —y.)? is not ideal: penalizes model for “too right”.
— Minimizing number of errors is also not ideal: NP-hard.
— Tractable upper bounds are hinge loss and logistic loss.

(w“’x,'~y,~>l T
‘OCJ(|+€YF<)/JW X/>>

T <
y=! \
0

— We also discussed defining losses with multiple classes (softmax loss).

Course Roadmap

* Part 1: Overview of Machine Learning

e Part 2: Large-scale machine learning.
— How do we fit these models to huge datasets?
— Why are SVMs/logistic easy while minimizing number of errors is hard?

Convex Functions

 We are first going to discuss convex functions:
— Minimizing convex functions is usually easy.
— Minimizing non-convex functions is usually hard.
{) .
 The ‘easy’ problems we have discussed are convex:

— Least squares, robust regression, logistic regression, support vector
machines, multi-class logistic, brittle regression, Poisson regression.

— All of the above with L2-regularization.

* The ‘hard’ problems we have discussed are non-convex:
— 0-1 loss, “very robust” regression.

Convex Sets

* First we need to define a convex set:
— A set is convex if the line between any two points stays in the set.

?OF all xeC W‘O(yé(/ we have @X*U’@\/ ¢C for)< ﬁé\

“

Convex Not Convex

@

o\

0(,,7/$,/ 4/@ 7

Convex Sets

* Examples: Z///

e —

feal- slmm W\D

Positive orthant Q {X l X>U //
Hyprploe Tx | ae= S ////
HO\\WC”SlomcC: Sx lax b /

Norm=ball: § x| Il € ¥Z

Norw = cone: % (%) | N1l €78 Ly~ norm Cing

T

Showing a Set is Convex
£'§~ = i lax =53
i 'Hqé/\ 1[5{ x €C and \/eé ans 0\< @é)
One ety Choose oy we have o\"(@ﬁ ((“977)
€N Cr Gn J -
gﬁA : / y M the ge?‘) = o (ax) =+ (I- 97(07\/)
o 4 Smt’rlé Z L@[vwcem = @jo + Uv5>L> — IO

H\”W\ s alsy in e ce |

, Mesel Bl f (=20l k< 103
fher For x €€ o yel and 0L <
We hove)6y +(l*@>>//)

H@W o ,omvﬁ o 867(LS (OVH/*U(,P

- /"\V‘OH’W WW)/: Show
+L\m7l 5C‘F (s [.V]_/("ﬁ/jfcf/g‘\/)
©$ Sets WL(WL

A ¢ e Ko < loalh + (1 gyl Crange Py
Con v t¥ o = LoHll] 4 Yg] iyl Chowopmarty)
a<mwg§§;\\\fr@mu+<#aww =

< 6 mas S I (1= @mad AL 1L
f:mﬁzmmnﬂgi\o ot

Intersection of Convex Sets

* Intersection of convex sets is convex: 5,5'7 Vclae=bl N\ T x| el <I0S

s a (onvex set

U T

- 10

—D
FOV 8><qmool€> X Sqféﬁwcyﬂ/vj linear program Conslramts are a conpey set
Axsb
AQ?X:bé’ﬁl

[B< x<UB

Convex Functions u
* A function ‘f’ is convex if: o

1. The domain of ‘f’ is a convex set.
2. The function is always below ‘chord’ between two points.

Flox + U-0))< 6f) + (-0)f(y) for all xeCyye 6 and 06|

IM()J'KO\}LIOV\: O\l/ k@a(M G

e S‘[o[oq{ myma,

(@mnﬁav@)w
e P(y) WQ Can Winimize @ convex 70(/\1/1(,7[/'0;’\

. 19>/ @1\/\ ((M(j Qﬂy Sfme?DV!af\/ [00'[1/7\},

Convex Functions

-
<

 Examples:
Qv\aéwﬁic functions ?(X)l’ O\xl“%x%c) o 70
Lmear ?&Ay\oﬁor\s “F()O: O\TX +1

EK{OOV\QMLMf’ ?(X> = ‘9)(70 (a)(>
/\/engﬁw (OL)MIH/\M 9(03——/09(%)
Absolute value: PGy = 1«
Max Soncton £0) = m—,wé)(/?

/\/eﬁﬁ(ve €ML/<’[P>/J ?(%) - X |09 (}()7 X>O
Logistic loss™ $() = (09([+ exp(~2))
(/09*‘Sum“€>q0’ F(K> = ‘69((%“}000)

Differentiable Convex Functions

* Adifferentiable ‘t’ is convex iff ‘f’ is always above tangent:
WC(\/> >/ P(x) -t VP(X>T(>/ _ >(> ﬁ?r q(l x& Q\/\o(yéé

: e Flx)+ VF(y)T(y ~x)

I8 VEO=0, ths implies £(,07 £6) for y So xS

G 3{0’00/ W)M;'m/-z€f

Twice-Differentiable Convex Functions

* A twice-differentiable ‘t’ is convex iff it’s curved upwards everywhere.

For one-dimensionl ?mﬁiong reduces o ') 20 v
w7

\/\5\’\0\\\>/7 —'-l/\llé 1S JH/\e easies] \/\/0\\/ 'fO SN a functfion s Convex

FO?” VWLAHWQF)O#@ 1(\(4;4(/{1'0;/67 C)LW‘*éfO(/}Zm'T[Or\ {g

VGO =0 for all xec
s

L»A&O e ang A (S

M and

\/TAYZO ’FOf a”)/

4
’

Concave Functions

* The negative of a convex function is a concave function:

/<C,nw //’///
vy // /

(oncave

Showing Functions are Convex

 Examples: @/

-—

TF Feo=x? =L The £
TAj ~£@>v—%xle'%th—Pc MUH\A%O
Then 00 = 2

fﬁh / ‘7%Yx =
U\V\é Fv\l(ﬂ:g ‘) AX+L’

| and VAE() =)
Oince 120 weve . ,
g\/\()\/\/n K'D\ ‘[5 COPVEY, mC@ v P(X> é O V\/@\\/f/ SL\6\A/V\ 'F(X)

S CoNex.

Showing Functions are Convex

 Examples:

T
PO L=y 1P

We Vav V’*’ w YT Y.
D= YT (K y) Foy =y

Vi) = XX =Xy (y)

— 2
\/\/M\WL JFO S how J[L,ﬁ sz[w)}o o HX)(/} Z 0
Or @}M‘Vq/4m+i\/ yTVZf(VA//O SQ Jﬁﬂj'f Sstmwf; /5

C/_O_Y\Vﬁ(and SGH/V}(}

V) =0 yives alobal

IV)'
wa

Strictly-Convex Functions

* A function is strictly-convex if these inequalities strictly hold:
tlox + (-0)y) < 6ft) + (1-)f(y) for O< &</
Fly) = Fl)+ VK (y -)

VGO = 0 (\/W?@my > 0 for all y#0)

* Strict convexity implies at most one global minimum:
Potnts ' and 1\/' cant Vot be (floloa,[minimg, 1E X /) sinie
V}VL\Lx \/[/OMU ’I/V\r,\\\/ "F(QY 4(’* 9)7> lg b}’;{g_"/l/ 9[0Lm} mn.

* This implies L2-regularized least squares has unique solution: @%7#0

y VW, = v (XTK+D Dy :/"ﬂxy Ty ATy = ()00 + 4y Ty = X + 2yl > O

Operations that Preserve Convexity

* There are a few operations preserve convexity.
— Often lets us avoid calculating Hessian.
— Often lets us prove convexity of non-smooth functions. VQ[Q%W/?]

L =T
* If f, and f, are convex, then convexity is preserved under: 52{6”%
1. Weighted sums (non-negative coefficients): EXM - SYMe
fGO= =500+2R00 i come if 220 and 2,7 '
2. Composition with affine function:
7[<7<> — AXJ[b) (S (onvex. (((’ffﬁ&) ((lfo{;;ex)
3. P0|ntW|se maximum:
4 x (wvn/e%)

10 = max 3£ 0,5 608 is conver, >0 Convey

NoN-negative swn of Convex

7 floe zwxifj yr 5+ A

(pause)

Current Hot Topics in Machine Learning

* Graph of most common keywords among ICML papers last year:

* Why is there so much focus on deep learning and optimization?

Why Study Optimization in CPSC 5407

* |n machine learning, training is typically written as optimization:
— Numerically optimize parameters of model, given data.

 There are some exceptions:
1. Counting- and distance-based methods (random forests, KNN).

* See my undergraduate course

2. Integration-based methods (Bayesian learning).

* Covered after large-scale optimization in my grad course.

Although you still need to tune parameters in those models.

e But why study optimization? Can’t | just use Matlab functions?
— V), linprog, quadprog, fmincon, CVX,...

The Effect of Big Data and Big Models

e Datasets are getting huge, we might want to train on:
— Entire medical image databases.
— Every webpage on the internet.
— Every product on Amazon.
— Every rating on Netflix.
— All flight data in history.

* With bigger datasets, we can build bigger models:
— This is where deep learning comes in.
— Complicated models can address complicated problems.

* Now optimization becomes a problem because of time/memory:
— We can’ afford O(d?) memory, or an O(d?) operation.

— Going through huge datasets 100s of times is too slow.
— Evaluating huge models too many times is too slow.

Fitting Logistic Regression Models

Recall the L2-regularized logistic regression objective function:

0\ M I — T. />\ Q
o 2 logCU el)+ L)

This objective function is strictly-convex and differentiable.
But we can’t formulate as linear system or linear program.
Nevertheless, we can efficiently solve this problem.

There are many ways to do this, but we focus on gradient descent:
— Iteration cost is linear in ‘d” (not true of IRLS/Newton’s method).
— We can prove that we don’t need too many iterations:

 Number of iterations does not directly depend on ‘d’.

Gradient Descent

e Gradient descent is based on a simple observation:

— Given parameters ‘W%, direction of largest decrease is -Vf(w?)).

INOW
2
/@ N
lope { 03 15 \/\€(%{7 L) nd \N'W UPC 7V(\A/>

sf() 10{[(\\05# CK{W@”@C By ﬂ(v@hgq\ 0

Gradient Descent

e Gradient descent is based on a simple observation:

— Given parameters ‘W%, direction of largest decrease is -Vf(w?)).

£

Gradient Descent

e Gradient descent is based on a simple observation:

— Given parameters ‘W%, direction of largest decrease is -Vf(w?)).

)
ity

s
E— Pow C‘%’NMJ”%” Is GWS)//'VQ) >0

Wmﬁ Tﬁ Mf w.

Gradient Descent

* Gradient descent is an iterative algorithm:
— We start with some initial guess, w®.
— Generate new guess by moving in the negative gradient direction:

w'= W oy, VW)

(The scalar a, is the “step size’.)

fol = o VAT

— Repeat to successively refine the guess: /= W
1% Y
G{NML{) W>W)W)VH // A MAL/)
G U r
— Stop if not making progress or || 0,51 < (Some s

Gradient Descent in 2D

Gradient Descent

* If a, is small enough and Vf(w?') # 0, guaranteed to decrease ‘f’:

‘P(b\/t—H) < }C(wo)
* Under weak conditions, procedure converges to a stationary point.

1 |)
I‘C 70 s (on l/é)() COn mo/cfr
-)\0 (é(()éa/ M;M;M(AM,

E,V-‘k \,\,%w"f T | (L lwl o
"o caf Y Jrobal vamiium
\N\'W\'lmv\m

* Least squares via linear system vs. gradient descent: Ol d]

— Solving linear system cost O(nd? + d3). T -
-8 y () |)//J/W>"LX/\/
— Gradient descent costs O(ndt) to run for ‘t’ iterations.
* Will be faster if t < d.

Convergence Rate of Gradient Descent

e How many iterations do we need?
— Let x* be the optimal solution and € be the accuracy we want.
— What is the smallest number of iterations ‘t” such that: /Vofah‘om:

flx)-Fx)< € " optmization
wé ng(Aﬁll)/ ﬁ(/{
* To answer this question, need assumptions: About optimizing
+ — Let’s assume MI\{ va(x)\% LD or ol « and some L <0
R T ond 4.7 0
=7 cam\/ZX, Sjrwona\y (onvoy. . ISjFOV\?‘(y CTIL,
c XWZ‘?’; \/TV%(X/?MJ(y'(y Viloy < L“\/H1

LE Fey= 1 Ky P42 ey = rin eg(K)+42) and | = max eigX)+)

Bonus Slide: Constants for Least Squares

* Consider least squares: [(,)= A<~
WZ‘\&{' arye ’L’ ond)/14’ §MCL\ 7L(,\Q][/(4/1 $ vZF{y)%LI ?

/\/O%e n\"ﬂ[v TF[X) /47/4) ml/\z] Since)%S S/VW/M?}//L Weé¢ (an §ec7l/a\/ C{e son 05}711%3
- -
A A= ZW 5[q‘l Lhere % 4= [aud q (/]J =() for 1:7l (ﬁsswe //);7922”'2@)

We con wrife Om/)/ s [inenr Cowbinglion of oL, ﬁom WJS y: °<§// 272 +”<J7J

S0 we bwe TV = T AR = (f% = 5%7%%/ fWJ

/\/07% ‘“fﬂL w¥ (am assume I/” l
O \/>/ 20< =33

voq v
Sé \/[v j‘:\6(7\/ S Ma¥lnn MLZPJ I/VZ\A/\ , aV\J zmlze:l \/VLW\ (X&j

=
/
9Lv:nc {/ j = V"W‘V(elg AT/M avu/ A~ ﬁ - m}n(a (/4/4>

Convergence Rate of Gradient Descent

. .] £ — 1% = < t)
 The gradient descent iteration: RO~ i) = ¢ e

Mean < t e
= (b= o, VFGO) M A
* Assumptions: .ty) = loye H;L 4(¢)
— Function ‘f’ is L-strongly smooth and p-strongly convex. %f) e
— We set the step-size to a, = 1/L. or t 2 O O}C/g))
* Then gradient descent has a linear convergence rate: (sine p</)

7C()(5> - f(xk) < OCpt) {for P< |
— It follows that we need t = O(log(1/¢)) iterations.

* This is good! We want ‘t’ to grow slowly in accuracy 1/¢. {Q)(ﬂxth*‘))

— Also called ‘exponential’ convergence rate.

Convergence Rate of Gradient Descent

* One version of Taylor expansion:

)= Flo + VECOT(y=x) + L0 =) VG () For some 2

w B, Yor all x and y

' .) (
mfaf;?a’}lw\ 016 ll(\ a kx(

P~ Vv’:(x)—r(y‘yﬂ%(\/‘X)Tvzf/z?(y“x)
as 7(\\/11/167[&01/\ of v

e+ V'P(X)T(yvy> as G {‘\w\cﬂovs O“IE \\//

Using Strong-Smoothness

* One version of Taylor expansion:

H) = FLo + VROT (=) + L= V() w; e 2
or all X and v
From o) “Susthness we have VTVQW[\(Z)\/Q LR o any Zyam/l/

£(>/>§ p[;{) + VWC@OT(&/“—X) + %‘\yﬂd{z Lor &L/‘ x and .
i

p Let's fnd win o quedblic
(/1”31"/ J/JD\AVlo}:

(}wolJfoﬂLl(, %(Zﬂi”
L%\ on f

I"P we §@+)(t4y,

to minimize Lounl
__——-

We tgks’ -+l N
gt x = b 7 YRGE

Let c](y>: P(y)*Vfo)T(/v“yW%”y "
Vo= 0 T V) =0+ L)

Using Strong-Smoothness

* One version of Taylor expansion:

ﬁgo:r$u>+<wnmﬂy-x>+»uyagﬂwﬁawfwy §r7M6z>
or all x and
From SML_SMM} we have: VTvqf(Z)V < LIV fo any Zya”/ %

£(>/><wf(x) + VF)T (/ X>+*—‘y At o all xamf},

|
Set y=xt ond \/“xtﬁ«"

FTDS RGO+ VPTG)+ Bl = IF = o= VR
= PG+ VR (=4 LYF(E)+ L Hﬂ LyP()l? ot of uppe o)
= Tt)~ AvAaED) V%ﬁ}% “W t)”

)) = VPGl
= 005 — LI9pe))?

Using Strong-Smoothness

 We’'ve derived a bound on guaranteed progress at iteration ‘t’:
FOED < £ =L v o) |2

— |f gradient is non-zero, guaranteed to decrease objective.
— Amount we decrease grows with the size of the gradient.
— Note: bound applies for any strongly-smooth function (e.g., non-convex)

§¥+ Xt+/.%0

VV]‘IV\I'VV]‘(ZQ bo\mcj

(}WQJWM+1C M%r
bovnd o TP

-FVO"’\ 5#;/7)/\5}
Simpothness

Using Strong-Convexity

* One version of Taylor expansion:

«P(y>: {'\[)0 4 VWC(X>T(l/_X> + %(ywxf“v?%\(z)(}/’x? f;w Spﬁl/ﬂ_é ZC’
or all X an >/

g)/ ‘Sltmv\ \(olfl\/ey'nL/ W L\“VZ VTV2£[2>V>//% {}OY _C{_U \/ Q(/la/ 2.

ﬁ(y)} 10[)0 + Vf(%)T(t/*—)O + %C Hy“’x((z
q(/‘a CJ“’”LM l%f‘ IOO\/\V\J on)f]

F0

\/\/@ /RVIOW 7% CJL

L) comst be
— - ST o E—QLQM[M N IMun mf LCN'/'J—

Bouni on
idance £ 30“

Using Strong-Convexity

* One version of Taylor expansion:

Fly)y= Lo+ VEOT (=) + L) V) () for some 2
D, ol | S Yor all x and y
)/ ‘SM&/ e lf\ﬂ\/e \/ Y, 'F(z)\/?//(/ "%Y g_ﬂ v O((/IL/ s

£(2%>2 10()0 + VwC(X)T(l/“—)O + %L ”)/“’x((Z
lnimz e M Sinlej \/1/17[% Veglﬂgd' 1o y_'

F) 2 FGHO— L 1w eco))?

i
A

Combining Strong-Smoothness and Convexity

e Our bound on guaranteed progress:

FUE)S RGO = o N9R)I
* Our bound on ‘distance to go’:
[G6M) 7 F168) =, WA =LV o 169 1)

* Use ‘distance to go’ bound in guaranteed progress bound:
FUE) S F U0 =L (—ael F68) = £19)

. Subtract f(x”) from both sides and simplify:
FLE) =00 & PGS = FIF) =2(F10) ~ 1)

= (1 /%> | 15 - wp(x?()j

Combining Strong-Smoothness and Convexity

e We’ve shown that:
L8 -FeP < (1= %)Eﬁ(xﬁ-)) "WD(K#")]

* Applying this recursively:
Flxt)- F+) < A=) [(=)L F(E2) - ﬂﬁ)ﬂ

- U‘%)ZEWDQ&J)‘fU#)]

— “ M)gﬂF(Xt_Q)MWC(Xk)}

< (1 <y [FGD =111]
W

e Since u <L, we've shown linear convergence rate.

Discussion of Linear Convergence Rate

We’ve shown that gradient descent under certain settings has:

qf(xf)~wp(ﬁ>§ (] *%)fzf(ﬂ)“”ﬁ)]

The number L/p is called the ‘condition number’ of ‘f’.
Connection to matrix condition number:
— For least squares, condition number of ‘f’ is condition number of X"X.

This rate is dimension-independent:

— It does not directly depend on dimensions ‘d’.

— In principle, applies to infinite-dimensional problem:s.

— But, L may be larger (and p smaller) in high-dimensional spaces.
In practice, typically you don’t have ‘L.

— We'll get to practical issues later...

Weaker Assumptions for Linear Convergence

* We can get a linear convergence rate under weaker assumptions:
— Proof works for any a < 2/L.

* Don’t need ‘L, just need step-size a small enough.
* But optimal step-size in proofis a = 1/L.

— Proof works if you take the optimal step-size.
_ , —_ Tt
o= o yuin § FlEvtE =2 FUEF VRO < S0E+L9F)

* You can compute this for quadratics: just minimizing a 1D quadratic.

— Proof can be modified to work with approximation of ‘L’ or line-search.
* What you typically do in practice.

Weaker Assumptions for Linear Convergence

 We can get a linear convergence rate under weaker assumptions:
— Proof works for once-differentiable ‘f* with L-Lipschitz continuous gradient:

GFO‘A W\ AO@6 V\O\F Cp\af\Cj@ TOO quuc’\l\/ HV{'\ZY) Vﬁ(}/)l/ < L/;()// 7Corq

XCH/ly

Since this implies: “;(ﬁ < () + 7T (\/\Q + %Il\/*xl/ {or al YV and X

4 o

(see Nesterov’s “Introductory Lectures on Convex Optimization”)

— This doesn’t need to hold globally, proof works if we can show:
FGD € 1A #RFEE)TE) - LI for some L and
all ¢t oand

— Basically, for differentiable functions this is a very weak assumption.

Weaker Assumptions for Linear Convergence

* We can get a linear convergence rate under weaker assumptions:

— Strong-convexity is defined even for non-differentiable functions:

We Qay l-P s wvd\wr\gly (ONY€ y]70 jf\(y)*%b“y/lz IS O (onve « ﬁ,,,/.(’/la/\ oF e
— For differentiable functions this is equivalent to:

FG) 2 £00 w00l -+ e lly 1P for x and

— This is still a strong assumption:

 But note if ‘f"is convex then “f(x) + (A/2)]|x||?is A-strongly convex.

— What about non-convex functions?
* Proof works if gradient grows faster than quadratic as you move away from solution.
* Two phase analysis: prove that algorithm gets near minimum, then analyze local rate.

— Convergence rate only applies for ‘t’ large enough.

(pause)

Gradient Method: Practical Issues

* In practice, you should never use a = 1/L.
— Often you don’t know L.
— Even if did, “local” L may be much smaller than “globa
* Practical options:
— Adaptive step-size:
e Start with small ‘'L’ (e.g., L=1).
* Double ‘L it if the guaranteed progress inequality from proof is not satisfied:

Lt~ LVFGY) < FGOD + VG (G =297/ -)(t>+/§ | (= Lvac)-4p
= £ =5 IVFGHI

* Usea,=1/L.
e Usually, end it up with much smaller ‘L: bigger steps and faster progress.
* With this strategy, step-size never increases.

III

L: use bigger steps.

Gradient Method: Practical Issues

* In practice, you should never use a = 1/L.
— Often you don’t know L.
— Even if did, “local” L may be much smaller than “global” L: use bigger steps.
* Practical options: \
— Armijo backtracking line-search:

* On each iteration, start with large step-size a.

e Decreasing a if Armijo condition is not satisfied: makes swe\\sh/;
1< small emu%

PO < Fle) = PN VFEN* 160 5 omp 7660 /] uxm((3 T\/P\(XQ)U
)

» Works very well, particularly if you cleverly initialize/decrease a. {T/)

— Fit linear regression to ‘f’ as a changes under (quadratic or cubic) basis, set a to minimum.

* Even more fancy line-search: Wolfe conditions (makes sure a is not too small).

Gradient Method: Practical Issues

* Gradient descent codes requires you to write objective/gradient:

function [nll,g] = logisticGrad(w,X, V)
VEW = V.*(X*W);

T Fur i value N

nll = sum(log(l+exp(-yvXw))); WP(W)Z [03 [["F fy(ﬁ(gin7X§>>
1T

+ Gradient N .

g = -K'*(y./ (l+exp (vEw))); V-F(\,ﬂ = 2 - _,_,XL_:\ X{

end i |)7‘6)(‘/0(\/;“/(){}_)

* Make sure to check your derivative code:

Flx+ S e)— WC&)

— Numerical approximation to partial derivative: V, £y) 72 T c

VR T 2 flct 50~ £6)
§

— Numerical approximation to direction derivative:

Nesterov’s Method

Nesterov / vamf i/ m(// ~loal [/ (/OVB‘/I(&&I][e L)/?;J/W#

Grodiant mef L\og

Nesterov’s Method

* Nesterov’s accelerated gradient method (starting with y° = x°):
=yt = VG
4 +|
/; = %" *ﬁﬁ&t —x") 0=

Tr ‘Q\ s §\ww\\i\\/\60ﬂvg7< ax/\g Y£ W L'”[/{rgclzxﬁz) WPVDWS from O(IL;, /Oa(‘é» Tc) O(E/ (—[)

(C[Oy: 7[o o/of/?'\q/}
* Similar to heavy-ball/momentum method: C@ _Z
Xei\:xt~o<tVF(xt)+ﬁt&t’ xt’”) i | 4=

— Conjugate gradient: optimal a and B for strictly-convex quadratics.

Newton’s Method

* Can be motivated as a quadratic approximation:
F(}J: ‘P(){t>+V1p(>(t>T(7 "'X@* —;]2- (y*xt) 77275\(2/)(\/“)(6) For some 2 betuweon

y aud i f

g ‘F(x@ +Y P(th(}/ “’Xﬁ) + 2;1—- Cy'xt) VQ“F(XQ(,V ._Xi) (QSSumfna V'ch(xt)} O)
* Newton’s method is a second-order strategy (uses 2" derivatives):

XH{: Xt“ ¢ Jt where CLC s The solufion o VHE)E = V(Y

— In stats, Newton’s method applied to functions of form f(Ax) called “IRLS”.

* Generalization of Armijo rule:
() < 68— o, 7N J

* Step-size o, goes to 1 as we approach minimizer.

Newton’s Method

(Q?i“ - \

X - U.f’{X}

Convergence Rate of Newton’s Method

TE NG s Ll(usc\n‘ljfz*Covxjﬁnmmj OW\A VZWC(XH%MI ﬂl@/\ for \t\)0“7@ enowgl
FLEm -6 < pe [E0)=F03 with fin .= 0
20

WW \Orog}mg C/lfxomqﬁ 01% éach ”L“?fcdim\ }‘é]

* Local superlinear convergence: very fast, use it if you can.
* “Cubic regularization” of Newton’s method gives global rates.

* But Newton’s method is expensive if dimension ‘d’ is large:

Requires sohution of VG = V1Y

Py
4y

Practical Approximations to Newton’s Method

* Practical Newton-like methods:
— Diagonal approximation: Afdnroxsmode VD by diagonal HE it elomets Vi £
— Limited-memory quasi-Newton:Diac/onq/ 6)/@ low Vanl Hesgan ap/omx,m,f,m
(L-BFGS) Choser to Salisty "quas; ~Newtor ec/m%oms,
— Barzilai-Borwein approximation: AW(,X-LWJ[,? V(L) LJ\/ z’AfmTﬂry matrix I)

I\ﬂ'lj(l\o\\

C%o@sevd@p’aze Xy QS lcast S quaves solufun 1o i ™ Vowdon g(fﬁof/[oﬂj
— Hessian-free Newton: /\
1

/

(>/ SfackiprﬂL O (onj(/xﬁoﬁle ﬁ/mc!}@ﬂf 7LO

@WM@M}L minimize (fuadralic o VOX;me%iOIA,

C’Mo\lwﬁ f@(fm}fés V‘wa\/ L)M+ _HﬂS Can [06 Cl/}f’q(f)‘\/ qpr),ﬁ@xmqf%{? vQ’F(XM:;Z‘OVF(XﬂL%)%)

— Non-linear conjugate gradient.

Practical Exercise and Homework?

For practical experience with gradient/Nesterov/Newton methods:
— http://www.cs.ubc.ca/~schmidtm/MLSS/differentiable.pdf

Corresponding code is available here:
— http://www.cs.ubc.ca/~schmidtm/MLSS

Works through a Matlab implementation of:
— Gradient descent (fixed step size)

— Armijo line-search.

— Hermite polynomial

— Nesterov and Newton method.

— Practical approximations of Newton’s method.

At the end, you will have a useful large-scale code.

http://www.cs.ubc.ca/~schmidtm/MLSS/differentiable.pdf
http://www.cs.ubc.ca/~schmidtm/MLSS

Summary

Convex functions: all stationary points are global minima.
Showing functions are convex.

Gradient descent finds stationary point of differentiable function.
Rate of convergence of gradient descent is linear.

Weaker assumptions for gradient descent:
— L-Lipschitz gradient, weakening convexity, practical step sizes.

Faster first-order methods like Nesterov’s and Newton’s method.

Next time:
— What if we don’t know which features are relevant or which basis to use?

