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Last Time: Supervised Learning

 We discussed supervised learning:
— We have a set of inputs x, and a corresponding output y..
— Food allergy example:

* X is the quantities of food we ate on day V.
* y.is the level of IgE we measure on day ‘’.

— The goal is to learn a function ‘f’ such that (f(x,) —y,) is small.

 We introduced standard notation for supervised learning:
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Last Time: Linear Regression and Least Squares

* We considered the special case of linear regression:
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* To fit this model, a classic approach is least squares:
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e Which we can write in matrix notation as:
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Last Time: Nonlinear Basis

* Change of basis allows nonlinear functions with linear regression:
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Fundamental Trade-Off of Machine Learning
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* Same trade-off exists as we add more features:
— More features means lower training error.
— More features means training error is worse approximation of test error.



Controlling Complexity

We know that complex models can overfit.
But usually the “true” mapping from x; to y, is complex.
So what do we do???

There are many possible answers:
— Model averaging: average over multiple models to decrease variance.
— Regularization: add a penalty on the complexity of the model.



L2-Regularization

Our standard least squares formulation:
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Standard regularization strategy is to add a penalty on the L2-norm:
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Regularization parameter A controls ‘strength’ of regularization:
— If Ais large then it forces ‘W’ to be very small: low complexity.

— If A is tiny then ‘W’ can be get huge: high complexity.

Has been re-invented several times:

— Tikhonov regularization, ridge regression, etc.



L2-Regularization

* |n terms of fundamental trade-off:
— Regularization increases training error.
— Regularization makes training error a better approximation of test error.

 How should you choose A?

— Theory: as ‘n’ grows A should be in the range O(1) to O(nV/2).
— Practice: optimize validation set or cross-validation error.

* This almost always decreases the test error.

* How do you compute ‘w’?
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Ridge Regression Calculation
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Why use L2-Regularization?

 Mark says: “You should always use regularization.”

* “Almost always improves test error” should already convince you.

* But here are more reasons:
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Solution ‘W’ is unique.

Does not require X’X to be invertible.

Solution ‘W’ is less sensitive to changes in X or y.

You can use Cholesky factorization instead of LU factorization.
Makes large-scale methods for computing ‘w’ run faster.

Stein’s paradox: if d > 3, regularization moves us closer to ‘true’ w.

In the worst case you just set A small and get the same performance.



(pause)



Parametric vs. Non-Parametric

* Polynomials are not the only possible bases:
— Common to use exponentials, logarithms, trigonometric functions, etc.
— The right basis will vastly improve performance.
— But when you have a lot of features, the right basis may not be obvious.

 The above bases are parametric model:
— The size of the model does not depend on the number of training examples ‘n’.
— As ‘n’ increases, you can estimate the model more accurately.
— But at some point, more data doesn’t help because model is too simple.

* Alternative is non-parametric models:
— Size of the model grows with the number of training examples.

— Model gets more complicated as you get more data.
— You can model very complicated functions where you don’t know the right basis.



Non-Parametric Basis: RBFs

* Radial basis functions (RBFs):
— Non-parametric bases that depend on distances to training points.

* Most common example is Gaussian or squared exponential:
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* Radial basis functions (RBFs):
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— Non-parametric bases that depend on distances to training points.
* Most common example is Gaussian or squared exponential:
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e Gaussian RBFs are universal approximators (compact subets of RY)
— Can approximate any continuous function to arbitrary precision.



Non-Parametric Basis: RBFs

 RBF basis for different values of o:
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RBFs, Regularization, and Validation

* Very effective model:
— RBF basis with L2-regularization and cross-validation to choose o and A.

RBF Basis (sigma = 2.000000) . RHFHasls (sigma =0 50000y
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— Expensive at test time: need distance to all training examples.



RBFs, Regularization, and Validation

 RBF basis with L2-regularization for different values of o and A.
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* At least one of these models is often a good fit.



(pause)



Alternatives to Squared Error

e Squared error is computationally convenient choice:

— Solution involves solving a linear system.
w= (0TI Xy
e Butit’s usually not the right choice:
— Corresponds to assuming error are normally distributed (later in lecture).

— Makes it sensitive to outliers or large errors.
— Makes it inappropriate with restrictions on y (like binary or censored).

* There are many alternatives to squared error.
— But these have computational implications.



Least Squares with Outliers

* Consider fitting least squares with an outlier in the labels:
— Observation that is unusually different from the others.

|Egg | Milk | Fish | Wheat | Shellfish | Peanuts | .. | | IgE
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e Some sources of outliers:

— Errors, contamination of data from different distribution, rare events.



Least Squares with Outliers

* Consider fitting least squares with an outlier in jc\he labels:
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Least Squares with Outliers

* Consider fitting least squares with an outlier in the labels:
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* Least squares is very sensitive to outliers.



Least Squares with Outliers

e Squaring error shrinks small errors, and magnifies large errors:
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e Qutliers (large error) influence ‘w” much more than other points.



Least Squares with Outliers

e Squaring error shrinks small errors, and magnifies large errors:
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— Good if outlier means ‘plane crashes’, bad if it means ‘data entry error’.



Robust Regression

* Robust regression objectives put less focus on far-away points.
* For example, just use absolute error:
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* Now decreasing ‘small’ and ‘large’ errors is equally important.
* |In matrix notation, we can write this as minimizing L1-norm:
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Squared Error vs. Absolute Error

 Comparing squared error absolute error:
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Squared Error vs. Absolute Error

 Comparing squared error absolute error:
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Regression with the L1-Norm

* Unfortunately, minimizing the absolute error is harder:
— Gradient doesn’t always exist. \2\
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— Generally, harder to minimize non-smooth than smooth functions.
— But we can formulate minimize absolute error as a linear program.



Converting into Constrained Problems

* Key observation:
— Absolute value is maximum of smooth functions: lwi = May %w - w?

* We can convert to minimizing smooth function with constraints:
1. Replace maximum with new variable, constrained to upper-bound max.
2. Replace individual constraint with constraint for each element of max.
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Minimizing Absolute Error as Linear Program

 We can apply the same steps to a sum of max functions:
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* Thisis a linear program:
— Minimizing a linear function subject to linear constraints.
— We can efficiently solve ‘medium-sized’ linear programs: Matlab’s ‘linprog’.
— There are other linear program formulations of this problems.



‘Brittle’ Regression

 What if you really care about getting the outliers right?
— You want best performance on worst training example.
— For example, if in worst case the plane can crash.

* In this case you can use something like the infinity-norm:
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* Very sensitive to outliers (brittle), but worst case will be better.



Robust vs. Brittle Regression

 We said that squared error is sensitive to outliers:
— Absolute error is less sensitive: can be solved as a linear program.

is more sensitive: can also be solved as linear program.
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Very Robust Regression?

e Can we be more robust?
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. eventually “gives up” on large errors.
e But finding optimal ‘w’ is NP-hard.
— Absolute value is the most robust that is not NP-hard.
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The ‘Best” Machine Learning Model

What is the ‘best’” machine learning model?
— SVMs? Random forests? Deep learning?
No free lunch theorem:

— There is no ‘best” model that achieves the best test error for every problem.

— If model A works better than model B on one dataset,
there is another dataset where model B works better.

Asking what is the ‘best’ machine learning model is like asking which is
‘best’ among “rock”, “paper”, and “scissors”.

Caveat of no free lunch (NFL) theorem:
— The world is very structured, some datasets are more likely than others.
— Model A could be better than model B on a huge variety of practical applications.

Machine learning emphasizes models useful across applications.



Last Time: Robust Regression

 We said that squared error is sensitive to outliers:

— Absolute error is less sensitive: can be solved as a linear program.
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Motivation: Identifying Important E-mails

 We have a big collection of e-mails:
— Marked as ‘important’ if user took some action based on them.

| » Mark .. Issam, Ricky (10) inbox A2, tutorials, marking
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Starred
mportant » sameh, Mark, sameh (3) inbox  Graduation Project Dema
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10:41 am
10:20 am
9:49 am
8:01 am
7297 am

* We want to write a program that identifies ‘important’ e-mails?

* Can we formulate as supervised learning?



Supervised Learning Representation for E-mails

* For e-mail i, the target label y. is binary:
— +1: “e-mail is important”.
— -1: “e-mail is not important”.
— Classification: supervised learning with discrete labels.

* What are the right features x. (basis) for e-mails?
— Use bag of words:
e “CPSC”, “Expedia”, “vicodin”.
* Binary “Expedia” feature is 1 if phrase “Expedia” is in the message, and 0 otherwise.

— Could add phrases:

e “you’re a winner”, “CPSC 540”.

— Could add regular expressions:
e <recipient name>, <sender domain == “mail.com”>



Supervised Learning Representation for E-mails
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 Can we make personalized predictions?

— Some messages ‘universally’ important:
* “This is your mother, something terrible happened, give me a call ASAP.”

— Some messages may be important to one user but not others.



The Big Global/Local Feature Table
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Predicting Importance of E-mail For New User

e Consider a new user:
— Start out with no information about them.

— Use global features to predict what is important to generic user. y
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 With more data, update global features and user’s local features:
— Local features make predlctlon persona//zed
T
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* G-mails system: classification with logistic regression.
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Classification Using Regression?

* Usual approach to do binary classification with regression:
— Code y. as ‘+1’ for one class and -1’ for the other class.

* Fit a linear regression model:
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e Classify by take the sign (i.e., closer ‘-1’ or ‘+1’?):
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Classification using Regression
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Classification using Regression

e Can use our tricks (e.g., RBF basis, regularization) for classification.
* But, usual error functions do weird things:
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Classification Using Regression

* What went wrong?

— “Good” errors vs. “bad” errors.
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Classification Using Regression

* What went wrong?
— “Good” errors vs. “bad” errors.
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1 Comparing Loss Functions
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1 Comparing Loss Functions
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1 Comparing Loss Functions
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0-1 Loss Function and Tractable Approximations

 The 0-1 loss function is the number of errors after taking the sign.
— |If a perfect classifier exists, you can find one as a linear program.
— Otherwise, it’s NP-hard to minimize 0-1 loss:

* We do not expect that efficient algorithms exist.

* Tractable alternatives to 0-1 loss:
— Hinge loss: upper-bound on 0-1 loss that can be written as linear program.
— Logistic loss: differentiable function similar to hinge loss.



0-1 Loss Function and Tractable Approximations
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0-1 Loss Function and Tractable Approximations
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Hinge Loss and Support Vector Machines

* Hinge loss is given by:
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— Can be written as a linear program using our max trick.

— Solution will be a perfect classifier, if one exists.

e Support vector machine (SVM) is hinge loss with L2-regularization.
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— Can be written as a quadratic program using our max trick
* Quadratic objective with linear constraints.

— Solution will be perfect classifier, if one exists and A is small enough.
— Maximizes margin: maximizes distance of data to decision boundary.



Logistic Regression

* Logistic regression minimizes logistic loss:
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* You can/should also add regularlzatlon
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* These can’t be written as linear/quadratic programs:
— But they’re differentiable: we’ll discuss how to solve them next time.



Logistic Regression and SVMs

* SVMs and logistic regression are used EVERYWHERE!
e Why?
— Training and testing are both fast, even for “large-scale” problems.
— Itis easy to understand what the weights ‘w;” mean.
— With high-dimensional features and regularization, often good test error.
— Otherwise, often good test error with RBF basis and regularization.
— For logistic regression, predictions have probabilistic interpretation.

——

J_WC Qy(y.l—;%\lw)x'\):gi9m(w7xi7 ﬂ\% mimmia)mj \m)m‘ac [055 COVH’S(POWJ; 15

C I maxim AW ‘.\ ‘<€ ' '1]/\00.5{ Q,g‘{\'yywjfﬂ
m(Z? = |
]*exf(vzﬁ




Discussion: Probabilistic Interpretation

 Why is probabilistic interpretation important?
— We can return a probabilistic prediction:
Tnstead of ?i = 17 Cay T het F(yAF / }w)xJ: 11
or Ay = 1lwx)= 517
— For complicated y, it may be easier to define probability than loss.
— We can talk about maximizing utility:
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Maximum Likelihood and MAP Estimation

* Unregularized logistic regression is maximum likelihood solution:
— Maximize likelihood of data given model parameters.
— Problem with maximum likelihood:

e data could be very likely in some very unlikely model from family.
* E.g., complex model overfits by memorizing the data.

* Regularized logistic regression is MAP (maximum a posteriori):
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— Model is a random variable, and we need to find most likely model.
— Can take into account that complex models are likely to overfit.



Multi-Class Logistic Regression

* Supposed y, takes values from an unordered discrete set of classes.
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* Standard model:
— Use a ‘d’-dimensional weight vector ‘w_’ for each class ‘c’.
— Try to make inner-product w_'x; big when ‘c’ is the true label ‘y;.
— Classify by finding largest inner-product: /' — qmj@w% wjx;g
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(Also exist models for ordered classes or count data)



Multi-Class Logistic Regression
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Course Roadmap

* Part 1: Overview of Machine Learning
— Linear models: change of basis, regularization, loss functions.

— Basics of learning theory: Training vs. test error, bias-variance,
fundamental trade-off, no free lunch.

— Probabilistic learning principles: Maximum likelihood, MAP estimation,
loss functions.

* Part 2: Large-scale machine learning.
— Why are SVMs/logistic easy while minimizing number of errors is hard?
— How do we fit these models to huge datasets?



Summary

Regularization: allows complicated models by penalizing complexity.
Radial basis functions: non-parametric universal basis.

Robust regression models: more suitable when we have outliers.
Converting non-smooth problems to constrained smooth problem:s.
No free lunch: there is no ‘best’ machine learning model.

SVMs and logistic regression: more suitable losses for classification.
MLE and MAP: probabilistic interpretation to losses/regularizers.
Softmax loss to model discrete yi, other losses can be derived.

— Next time: Why is logistic easy while minimizing number of errors is hard?



