SVAN 2016 Mini Course: Stochastic Convex
Optimization Methods in Machine Learning

Mark Schmidt
University of British Columbia, May 2016
www.cs.ubc.ca/~schmidtm/SVAN16

Last Time: Supervised Learning

 We discussed supervised learning:
— We have a set of inputs x, and a corresponding output y..
— Food allergy example:

* X is the quantities of food we ate on day V.
* y.is the level of IgE we measure on day ‘’.

— The goal is to learn a function ‘f’ such that (f(x,) —y,) is small.

 We introduced standard notation for supervised learning:
- \4'
pund X, = /%
. Xg - y 75
[— ‘17 |
N LJS

N X d d x|

Last Time: Linear Regression and Least Squares

* We considered the special case of linear regression:
A

—_— ~ 7
= W X, T ow, X, W, X e oW, Xy = ‘
| | 2 L 3713 Jd id]/\/X .
" N 9 / ey fi
¢ ombmaTion
o for " regrescn o
4 L we:gﬁf

* To fit this model, a classic approach is least squares:

n
S T 2
@Q’,g‘:w 2 (v\/ X yl>
=1

e Which we can write in matrix notation as:

Minymize H va — \/ HZL S oludion WS (X7X)~Ix7y

w € Rd/ (inverhble x7x)

Last Time: Nonlinear Basis

* Change of basis allows nonlinear functions with linear regression:

7(! 3
|
Xn
. P
\ ><] (%17 N o (X1>F
_ | P Sk - - (W
XPO\\/ - /I ’ |

Fundamental Trade-Off of Machine Learning

ereoy /(i/"’eS“fn()

L \/'h‘a}n}my

\/\/\OClel (om Pltxl'ty

* Same trade-off exists as we add more features:
— More features means lower training error.
— More features means training error is worse approximation of test error.

Controlling Complexity

We know that complex models can overfit.
But usually the “true” mapping from x; to y, is complex.
So what do we do???

There are many possible answers:
— Model averaging: average over multiple models to decrease variance.
— Regularization: add a penalty on the complexity of the model.

L2-Regularization

Our standard least squares formulation:
U\NJWW\ il ”Xw /”Q

w €
Standard regularization strategy is to add a penalty on the L2-norm:
A fgmn HX\/\,)/ 7+ //] Hw//

w R 2

Regularization parameter A controls ‘strength’ of regularization:
— If Ais large then it forces ‘W’ to be very small: low complexity.

— If A is tiny then ‘W’ can be get huge: high complexity.

Has been re-invented several times:

— Tikhonov regularization, ridge regression, etc.

L2-Regularization

* |n terms of fundamental trade-off:
— Regularization increases training error.
— Regularization makes training error a better approximation of test error.

 How should you choose A?

— Theory: as ‘n’ grows A should be in the range O(1) to O(nV/2).
— Practice: optimize validation set or cross-validation error.

* This almost always decreases the test error.

* How do you compute ‘w’?

1, Mm7L(qLI

Ridge Regression Calculation
O%y (e ﬂﬂ:%\/ﬂ X)) ' (\/~ o) +% W,
G/W”\A(lﬂ\%“ EW) =)< N — ><l\/ +
gﬁjﬁv\e\ szefol X’IXW T = ><T\/7 o

X+ T) = X7\/

— |

lﬂ{e‘wv‘)\'\(\\/ s XAy - which Glways € xisds:
— (D Ty
) | . 4 <>< / C0§7L3 Same Al
W= Cf Ay Hoaby Feye (1)) (¥ €5 Je ot Sgurares

Why use L2-Regularization?

 Mark says: “You should always use regularization.”

* “Almost always improves test error” should already convince you.

* But here are more reasons:

N O U whe

Solution ‘W’ is unique.

Does not require X’X to be invertible.

Solution ‘W’ is less sensitive to changes in X or y.

You can use Cholesky factorization instead of LU factorization.
Makes large-scale methods for computing ‘w’ run faster.

Stein’s paradox: if d > 3, regularization moves us closer to ‘true’ w.

In the worst case you just set A small and get the same performance.

(pause)

Parametric vs. Non-Parametric

* Polynomials are not the only possible bases:
— Common to use exponentials, logarithms, trigonometric functions, etc.
— The right basis will vastly improve performance.
— But when you have a lot of features, the right basis may not be obvious.

 The above bases are parametric model:
— The size of the model does not depend on the number of training examples ‘n’.
— As ‘n’ increases, you can estimate the model more accurately.
— But at some point, more data doesn’t help because model is too simple.

* Alternative is non-parametric models:
— Size of the model grows with the number of training examples.

— Model gets more complicated as you get more data.
— You can model very complicated functions where you don’t know the right basis.

Non-Parametric Basis: RBFs

* Radial basis functions (RBFs):
— Non-parametric bases that depend on distances to training points.

* Most common example is Gaussian or squared exponential:

g rininy expe
FOO = exp (- /—J—'H)

. 0l +a AL
:Zq\,/ w4ww%or (gﬁéeA-T d+ 1 q ‘ 7
11 (j @GC\'I”\[JQGS(IQ
@\\:aéf“ ¢ {AV\J}W\
us \9
*]uw

Tun

Wheie did constail om0

Nete each basis

M@é - Non-Parametric Basis: RBFS furcien depinic ol

= (L) (ex)

* Radial basis functions (RBFs):

Orlgmﬁ\(WL\{oﬂ[wes

)\X — x| 2()(/3(%

— Non-parametric bases that depend on distances to training points.
* Most common example is Gaussian or squared exponential:

1 -
><wrlu°~ QK{)& “fl ’('“)

.' _ HL
el ")

oy

N

(Qxf(%~ ﬁ“) eg(lx, ;(1“)

~

€/|0

Iy ~->/‘AHI

7\01)\
4
, 9: W }; 94%7@4 ME

X~ n,
e)Jw Xesg 5 1 by 0

e Gaussian RBFs are universal approximators (compact subets of RY)
— Can approximate any continuous function to arbitrary precision.

Non-Parametric Basis: RBFs

 RBF basis for different values of o:

05| o
0
.
o) 5 =
-
2
3 - "
-| - £ l
Iy
- *I # F
-I‘!u— ', L I: “-
|‘.= ‘nl L =
-l-q. .
3 ﬂ.'l.-l_"!" f

25

Could 4dd [ga_f W)l)M55

— [—X, —

><*: ,)~ i—
- — 3~ XHD
) , r

| /
‘ l

)
WWW
l d K
Now it AP\W\/\HS T }WV\
/ﬂéf@o\é of 0 C\w01>/ 4\6‘0w\ AO,+Q.

RBFs, Regularization, and Validation

* Very effective model:
— RBF basis with L2-regularization and cross-validation to choose o and A.

RBF Basis (sigma = 2.000000) . RHFHasls (sigma =0 50000y

RBF Basis (sigma = 0.125000)

cnay
01 7[/0wwf>
of daTAY
|'/\".

I IL]‘-Alll

— Expensive at test time: need distance to all training examples.

RBFs, Regularization, and Validation

 RBF basis with L2-regularization for different values of o and A.

05

LIS

A5

* At least one of these models is often a good fit.

(pause)

Alternatives to Squared Error

e Squared error is computationally convenient choice:

— Solution involves solving a linear system.
w= (0TI Xy
e Butit’s usually not the right choice:
— Corresponds to assuming error are normally distributed (later in lecture).

— Makes it sensitive to outliers or large errors.
— Makes it inappropriate with restrictions on y (like binary or censored).

* There are many alternatives to squared error.
— But these have computational implications.

Least Squares with Outliers

* Consider fitting least squares with an outlier in the labels:
— Observation that is unusually different from the others.

|Egg | Milk | Fish | Wheat | Shellfish | Peanuts | .. | | IgE
qu \ 0 0.7 0 0.3 0 0 — 700
0 ty 2 03 07 o0 0.6 0 0.01) 740
N Yy g 0 0 0 0.8 0 0 : 50
D xy G 03 07 1.2 0 0.10 0.01 40000

e Some sources of outliers:

— Errors, contamination of data from different distribution, rare events.

Least Squares with Outliers

* Consider fitting least squares with an outlier in jc\he labels:
e "otlier 115 ot Lke The olhers

This 1S f;/a{oau\/

\/\/L\u'] W é \/\/OW\“/L-

Least Squares with Outliers

* Consider fitting least squares with an outlier in the labels:
X (</_/|\O1/\“Nf v/) V\O"[}\(’ 77‘5 57%9/1

Abﬂb 5 Ll Leas
gc[mm/e; \/\/'(” mé\/mm//K/ (fa)

* Least squares is very sensitive to outliers.

Least Squares with Outliers

e Squaring error shrinks small errors, and magnifies large errors:

ALJW’V\% 1o Sq\/\m\(J W/MS
(57 =25
M i (’/;AQ:)/D/

e Qutliers (large error) influence ‘w” much more than other points.

Least Squares with Outliers

e Squaring error shrinks small errors, and magnifies large errors:

/‘”\%ﬂ)\ﬁi 6n015: gﬁwwﬂ[Corpie 6

— Good if outlier means ‘plane crashes’, bad if it means ‘data entry error’.

Robust Regression

* Robust regression objectives put less focus on far-away points.
* For example, just use absolute error:

A
A1 MmN ,\/\//l)(— \/
C}Cm ‘:él I /l/
* Now decreasing ‘small’ and ‘large’ errors is equally important.
* |In matrix notation, we can write this as minimizing L1-norm:

et “fe,s'nJM/\\ \/eCWLOr

N .
Iel=Z el b ey 0T | Myl
- (= W Ty

SO 7S R —

Squared Error vs. Absolute Error

 Comparing squared error absolute error:

/‘”\)fzéﬂ\\ﬁ(Erians’ ng(f Crppe s

X\Xlx\w ! “m)Mmlm &\)\\\\\\\\\N

Squared Error vs. Absolute Error

 Comparing squared error absolute error:

AW&I\/\% grrovs gc\wm\f W/MS

N.m 1”\\\\\\\\\1\]]

g, 11y~

w ER

Regression with the L1-Norm

* Unfortunately, minimizing the absolute error is harder:
— Gradient doesn’t always exist. \2\

\/W)/ nst smocth?
— @97 J'Lt/‘_é;e/‘ }055,

o —”[V‘«{WO 6£14f€5 P@fawvc’“/f/,
- SVVI@O‘/L%M(// M}c}/,f
> malie Fhe }prué//m

[}lﬂ"\f{“‘f‘

— Generally, harder to minimize non-smooth than smooth functions.
— But we can formulate minimize absolute error as a linear program.

Converting into Constrained Problems

* Key observation:
— Absolute value is maximum of smooth functions: lwi = May %w - w?

* We can convert to minimizing smooth function with constraints:
1. Replace maximum with new variable, constrained to upper-bound max.
2. Replace individual constraint with constraint for each element of max.

e Il = anypn e ules ongey 5 b 7
- !
%Mmﬂt have r=lwl g1 S_,i@f* olhoruise Gmévmt/\ {‘ st 2w ad 7w

C0h5+rd/m+3 ave o 677[196[’ ar we (ouc{ $€Cf€a5€ /‘ V&Y‘QVK

Minimizing Absolute Error as Linear Program

 We can apply the same steps to a sum of max functions:

Qtgry 2 [l =yl <7 @ty 2 b= yyy
wWeRS =i

wé W =1
> T~ _~W7y_§
&7 mjmg}i Z [subed fo 0 /maxg\u %~ Yo Y, ,
* For all i, i
= qgr ér' subed to 17 f’y, and 7y wh
e reﬂ%)CO (jl” /zl

* Thisis a linear program:
— Minimizing a linear function subject to linear constraints.
— We can efficiently solve ‘medium-sized’ linear programs: Matlab’s ‘linprog’.
— There are other linear program formulations of this problems.

‘Brittle’ Regression

 What if you really care about getting the outliers right?
— You want best performance on worst training example.
— For example, if in worst case the plane can crash.

* In this case you can use something like the infinity-norm:

204) Yy llgs lell,. = mex§lz, 1§

* Very sensitive to outliers (brittle), but worst case will be better.

Robust vs. Brittle Regression

 We said that squared error is sensitive to outliers:
— Absolute error is less sensitive: can be solved as a linear program.

is more sensitive: can also be solved as linear program.
X

L MM?V;]\) zes SMJ ervor

2 (w'x = y)*

| =

Minimizes qk go|<47[c Eviol

5 [~y

&

Very Robust Regression?

e Can we be more robust?

7

l

yi

. eventually “gives up” on large errors.
e But finding optimal ‘w’ is NP-hard.
— Absolute value is the most robust that is not NP-hard.

>

The ‘Best” Machine Learning Model

What is the ‘best’” machine learning model?
— SVMs? Random forests? Deep learning?
No free lunch theorem:

— There is no ‘best” model that achieves the best test error for every problem.

— If model A works better than model B on one dataset,
there is another dataset where model B works better.

Asking what is the ‘best’ machine learning model is like asking which is
‘best’ among “rock”, “paper”, and “scissors”.

Caveat of no free lunch (NFL) theorem:
— The world is very structured, some datasets are more likely than others.
— Model A could be better than model B on a huge variety of practical applications.

Machine learning emphasizes models useful across applications.

Last Time: Robust Regression

 We said that squared error is sensitive to outliers:

— Absolute error is less sensitive: can be solved as a linear program.

A

S 'Mfﬂ;Vp\) 2e5 SMJ ervor

2 (w'x = y)*

| =

&

Minimizes qk go|<47[c Eviol

5 [~y

Motivation: Identifying Important E-mails

 We have a big collection of e-mails:
— Marked as ‘important’ if user took some action based on them.

| » Mark .. Issam, Ricky (10) inbox A2, tutorials, marking
COMPOSE

Holger, Jim (2) lists Intro to Computer Science
nbogis) » Issam Laradiji inbox Convergence rates for cu
Starred
mportant » sameh, Mark, sameh (3) inbox Graduation Project Dema
>ent Mail » Mark .. sara, Sara (11) Label propagation
MNirafks (4%

=

=

=

=

10:41 am
10:20 am
9:49 am
8:01 am
7297 am

* We want to write a program that identifies ‘important’ e-mails?

* Can we formulate as supervised learning?

Supervised Learning Representation for E-mails

* For e-mail i, the target label y. is binary:
— +1: “e-mail is important”.
— -1: “e-mail is not important”.
— Classification: supervised learning with discrete labels.

* What are the right features x. (basis) for e-mails?
— Use bag of words:
e “CPSC”, “Expedia”, “vicodin”.
* Binary “Expedia” feature is 1 if phrase “Expedia” is in the message, and 0 otherwise.

— Could add phrases:

e “you’re a winner”, “CPSC 540”.

— Could add regular expressions:
e <recipient name>, <sender domain == “mail.com”>

Supervised Learning Representation for E-mails

W\

hepsct i C\y() edis "Vicodin \fecip il Name 7
| 0 0 0 |])
0 | O 0 -
X= 0 g | 0 AN
9 J |
’

|
0 [J j//J

 Can we make personalized predictions?

— Some messages ‘universally’ important:
* “This is your mother, something terrible happened, give me a call ASAP.”

— Some messages may be important to one user but not others.

The Big Global/Local Feature Table

\

\ml\\ Lentuos Sor woer | Thge dronon ~2 20
ﬁ T uere | 0 g gl Wt

Predicting Importance of E-mail For New User

e Consider a new user:
— Start out with no information about them.

— Use global features to predict what is important to generic user. y
crass al

USers

N T a
Y= 990 07) Catum fprameter> sharse
 With more data, update global features and user’s local features:
— Local features make predlctlon persona//zed
T
\/ = Sl V\(ij y‘) +\A</'C/>/7 “(\\f’q\/m,/fj /&Oﬁ/amsﬁl&ém f/wczfl

* G-mails system: classification with logistic regression.

7Lf7 ser Mu.

Classification Using Regression?

* Usual approach to do binary classification with regression:
— Code y. as ‘+1’ for one class and -1’ for the other class.

* Fit a linear regression model:
N .. .
£ = Wy ey Gy T Xy
7T
S
e Classify by take the sign (i.e., closer ‘-1’ or ‘+1’?):

\//\,I — 35| g (WT >()>.

Classification using Regression
)(],

\

dmw\f

()

N ear VPC/M%/O/\
/V'OJ f/

Classification using Regression

e Can use our tricks (e.g., RBF basis, regularization) for classification.
* But, usual error functions do weird things:

/WL}\\ (s \/\/%Vl w¢ \/\/m/ﬂL
(a V)ﬂfvf%’c% mSS/{L//>

I Times we 5¢€
\\/}WAM\

Classification Using Regression

* What went wrong?

— “Good” errors vs. “bad” errors.

L y\bj(|3
7p & Tmes we 5e€
OH\—/»/&F '

\\/}WAM\
(6\?&/\%\ B \ 1 %\X “ Yoy, ¥ w

\

Classification Using Regression

* What went wrong?
— “Good” errors vs. “bad” errors.

Qy\bj(4 |3
GQM

<§§v\w\\ —\ 1

> [l
23 ’

2y

1 Comparing Loss Functions

! %l
/\\o% Lor predic ™
L))g /DW/%/@V - ? Jyr\v\{)

ZD@)’VW Foo 1 /‘(Wf

Al
\/ﬁ \NNM

7‘\!04){ \5 \/;\j vi»

K/C)Ai c* o

L < Vs

\ \) , .
H\od\ Lrioe: Y ow 5\,\5“\}\ @ gOOé O « Vmﬂw} yi \/\Qrb (5 lo\fn\
penalie oo m%c, Yi hece,

1 Comparing Loss Functions

A\ |
Rl bse' Hor predictivg
N kig paly - - "

ZD@)’VW Foo 1 /‘(Wf

Al
\/ﬁ \NNM

7‘\!04){ \5 \/;\j vi»

K/C)Ai c* o

L < Vs

\ \) , .
H\od\ Lrioe: Y ow 5\,\5“\}\ @ gOOé O « Vmﬂw} yi \/\Qrb (5 lo\fn\
penalie oo m%c, Yi hece,

1 Comparing Loss Functions

AX S g N
o Lo el Yy e
&7) I Lo)g PW/%/*GVA# - E ‘&(\\/\@ /,,\IO*@(K4 \/;\j‘“i.
bejng foo righl
AREaEE
l/\/%cﬂ[V974 L:/M?Lf
/ \(Ow/‘l /OSS)
L Nomber 076»6//0[5,
@/@AicHO”
— < <\l
& %:w| \\—/—V—/
\/\’/0 V w«@f[@f\: VU\/H‘IV\Q) \;\Jt \/\Qifﬁ/ (5 lOﬁff\LlJ

Wl g o 2l o
P@“Q\\Y\EQ {N Q\J\%'V\% i W\ece.

0-1 Loss Function and Tractable Approximations

 The 0-1 loss function is the number of errors after taking the sign.
— |If a perfect classifier exists, you can find one as a linear program.
— Otherwise, it’s NP-hard to minimize 0-1 loss:

* We do not expect that efficient algorithms exist.

* Tractable alternatives to 0-1 loss:
— Hinge loss: upper-bound on 0-1 loss that can be written as linear program.
— Logistic loss: differentiable function similar to hinge loss.

0-1 Loss Function and Tractable Approximations

N
0o ol . whon
/\\D§< “Qr {\60‘\(V\C) Vi W
// B) J‘(\\/\@ (/\LJJJ{ \5 \/;\jv)

! \ﬂw e\\ fwiifé—\
| ™

/O // 1055,
/ K/GM Hon
B} ! < CJ

0-1 Loss Function and Tractable Approximations

A
N ol , whn
/\\Osq “(Or {\ee‘\(V\q Vi W
= ! *m@ /AL»O(M \/;\jv’°

Hinge Loss and Support Vector Machines

* Hinge loss is given by:

T

O\WW\W\J ZWM%%O LW X,;g
w € W =

— Can be written as a linear program using our max trick.

— Solution will be a perfect classifier, if one exists.

e Support vector machine (SVM) is hinge loss with L2-regularization.

N
g, 2 e 0,1yl + Al

— Can be written as a quadratic program using our max trick
* Quadratic objective with linear constraints.

— Solution will be perfect classifier, if one exists and A is small enough.
— Maximizes margin: maximizes distance of data to decision boundary.

Logistic Regression

* Logistic regression minimizes logistic loss:

O\rim”\)O()U —}{g\()(\/\/‘/ X))

* You can/should also add regularlzatlon

U\riwm j)%CHM\()(“\/W XD + /\ Wl/

* These can’t be written as linear/quadratic programs:
— But they’re differentiable: we’ll discuss how to solve them next time.

Logistic Regression and SVMs

* SVMs and logistic regression are used EVERYWHERE!
e Why?
— Training and testing are both fast, even for “large-scale” problems.
— Itis easy to understand what the weights ‘w;” mean.
— With high-dimensional features and regularization, often good test error.
— Otherwise, often good test error with RBF basis and regularization.
— For logistic regression, predictions have probabilistic interpretation.

——

J_WC Qy(y.l—;%\lw)x'\):gi9m(w7xi7 ﬂ\% mimmia)mj \m)m‘ac [055 COVH’S(POWJ; 15

C I maxim AW ‘.\ ‘<€ ' '1]/\00.5{ Q,g‘{\'yywjfﬂ
m(Z? = |
]*exf(vzﬁ

Discussion: Probabilistic Interpretation

 Why is probabilistic interpretation important?
— We can return a probabilistic prediction:
Tnstead of ?i = 17 Cay T het F(yAF / }w)xJ: 11
or Ay = 1lwx)= 517
— For complicated y, it may be easier to define probability than loss.
— We can talk about maximizing utility:

7 P {)Fe JC\F V\o"l joum
TP:0 FP: 100 'y

¢ - A 1T expected cost of
=Lcti= wa]”f(‘/f spar [>C(\/fffﬁm;\/ﬁ prer) T

L
not SFW/V\\ 15 Iow€F,

A

i f (yA - /\obwam}xj)Cb/A. :S/oom/))y; :mo*y@wﬁ

Maximum Likelihood and MAP Estimation

* Unregularized logistic regression is maximum likelihood solution:
— Maximize likelihood of data given model parameters.
— Problem with maximum likelihood:

e data could be very likely in some very unlikely model from family.
* E.g., complex model overfits by memorizing the data.

* Regularized logistic regression is MAP (maximum a posteriori):

oy flulyX) <=7 arymy ﬁﬁ[oﬁ(ﬁ(\/ﬂw}xoy—‘ og (4)

WGW
— Model is a random variable, and we need to find most likely model.
— Can take into account that complex models are likely to overfit.

Multi-Class Logistic Regression

* Supposed y, takes values from an unordered discrete set of classes.

d %
x \]'{f'c(/\\ ! ~ ? " Scrm'chL\\ "
ﬁ /. ,M% /
(C[ass//> ' (cl&\SS 2)

* Standard model:
— Use a ‘d’-dimensional weight vector ‘w_’ for each class ‘c’.
— Try to make inner-product w_'x; big when ‘c’ is the true label ‘y;.
— Classify by finding largest inner-product: /' — qmj@w% wjx;g

yf

(Also exist models for ordered classes or count data)

Multi-Class Logistic Regression

- _ To make a predicten, Com u%f
We have o (ommmefe/ W\oﬂLQ{ W‘;{ vv, wl ws \1 \/\/ K = "V ¥, /9/0/
OMC(‘ (OVwaf(

Mayx,mum.

We wout o loss Fumc)ﬁvn That will make \/v % 1319‘ when €3S ’“Af Frue laéf
ond will efherwise make w,!x SW//

We can &eﬁné ()rd%mb\))/iﬁ/ \Asinc) Sot Tmay Fon(Ton ch(k)i}\/) QVF(M& 0
. _ . : Y)o—m—ou - A
Ly = elWox) = explw,'x) o pr(wg %) F%m exple Mol el
!f QX\O(WJXD
To £t molel, use - Crencralizes 51 o il

— Sﬂ»ecm{ case of k<2 an/

_ K 3
—log Pl W k) = — W, 't log (zex,ﬂ(wcl'x()) wy =0

Course Roadmap

* Part 1: Overview of Machine Learning
— Linear models: change of basis, regularization, loss functions.

— Basics of learning theory: Training vs. test error, bias-variance,
fundamental trade-off, no free lunch.

— Probabilistic learning principles: Maximum likelihood, MAP estimation,
loss functions.

* Part 2: Large-scale machine learning.
— Why are SVMs/logistic easy while minimizing number of errors is hard?
— How do we fit these models to huge datasets?

Summary

Regularization: allows complicated models by penalizing complexity.
Radial basis functions: non-parametric universal basis.

Robust regression models: more suitable when we have outliers.
Converting non-smooth problems to constrained smooth problem:s.
No free lunch: there is no ‘best’ machine learning model.

SVMs and logistic regression: more suitable losses for classification.
MLE and MAP: probabilistic interpretation to losses/regularizers.
Softmax loss to model discrete yi, other losses can be derived.

— Next time: Why is logistic easy while minimizing number of errors is hard?

