SVAN 2016 Mini Course: Stochastic Convex Optimization Methods in Machine Learning

Mark Schmidt

University of British Columbia, May 2016 www.cs.ubc.ca/~schmidtm/SVAN16

Some images from this lecture are taken from Google Image Search.

Last Time: Supervised Learning

- We discussed supervised learning:
 - We have a set of inputs x_i and a corresponding output y_i .
 - Food allergy example:
 - x_i is the quantities of food we ate on day 'i'.
 - y_i is the level of IgE we measure on day 'i'.
 - The goal is to learn a function 'f' such that $(f(x_i) y_i)$ is small.
- We introduced standard notation for supervised learning:

Last Time: Linear Regression and Least Squares

• We considered the special case of linear regression:

$$y_{i} = w_{1} \times_{i1} + w_{2} \times_{i2} + w_{3} \times_{i3} + \dots + w_{d} \times_{id} = w_{X_{i}}^{T} \\ y_{i} = w_{1} \times_{i1} + w_{2} \times_{i2} + w_{3} \times_{i3} + \dots + w_{d} \times_{id} = w_{X_{i}}^{T} \\ \text{Combination} \\ \text{Combination} \\ \text{combination} \\ \text{of } \times_{i}. \\ \text{example 'i.'}$$

• To fit this model, a classic approach is least squares:

$$\underset{w \in \mathbb{R}^{d}}{\text{minimize}} \sum_{i=1}^{n} (w^{T} x_{i} - y_{i})^{2}$$

• Which we can write in matrix notation as:

Solutioni
$$w = (\chi^7 \chi)^{-1} \chi^7 y$$

(invertible $\chi^7 \chi$)

Last Time: Nonlinear Basis

• Change of basis allows nonlinear functions with linear regression:

Fundamental Trade-Off of Machine Learning

- Same trade-off exists as we add more features:
 - More features means lower training error.
 - More features means training error is worse approximation of test error.

Controlling Complexity

- We know that complex models can overfit.
- But usually the "true" mapping from x_i to y_i is complex.
- So what do we do???

- There are many possible answers:
 - Model averaging: average over multiple models to decrease variance.
 - Regularization: add a penalty on the complexity of the model.

L2-Regularization

• Our standard least squares formulation:

$$\frac{1}{w \in \mathbb{R}^d} = \frac{1}{2} ||Xw - y||^2$$

• Standard regularization strategy is to add a penalty on the L2-norm:

$$\frac{\alpha rgmin}{w \in \mathbb{R}^d} \frac{1}{2} ||X_w - y||^2 + \frac{3}{2} ||w||^2$$

- Regularization parameter λ controls 'strength' of regularization:
 - If λ is large then it forces 'w' to be very small: low complexity.
 - If λ is tiny then 'w' can be get huge: high complexity.
- Has been re-invented several times:
 - Tikhonov regularization, ridge regression, etc.

L2-Regularization

- In terms of fundamental trade-off:
 - Regularization increases training error.
 - Regularization makes training error a better approximation of test error.
- How should you choose λ ?
 - Theory: as 'n' grows λ should be in the range O(1) to O(n^{-1/2}).
 - Practice: optimize validation set or cross-validation error.
 - This almost always decreases the test error.
- How do you compute 'w'?

Ridge Regression Calculation
Objective:
$$f(w) = \frac{1}{2}(y - Xw)^{T}(y - Xw) + \frac{3}{2}w^{T}w$$
.
Gradient: $\nabla f(w) = \chi^{T}Xw - \chi^{T}y + \lambda w$
Setting to zero: $\chi^{T}Xw + \lambda w = \chi^{T}y$, or
 $(\chi^{T}X + \lambda I)w = \chi^{T}y$.
Pre-multiply by $(\chi^{T}X + \lambda I)^{T}w$ which always exists:
In Matlab:
 $w = (\chi^{T}X + 1 \text{ and } x + \chi)^{T}(\chi^{T}X + \chi)^{T}(\chi^{T}Y)$.
Cost: same as
least squares.

-

Why use L2-Regularization?

- Mark says: "You should always use regularization."
- "Almost always improves test error" should already convince you.
- But here are more reasons:
 - 1. Solution 'w' is unique.
 - 2. Does not require X'X to be invertible.
 - 3. Solution 'w' is less sensitive to changes in X or y.
 - 4. You can use Cholesky factorization instead of LU factorization.
 - 5. Makes large-scale methods for computing 'w' run faster.
 - 6. Stein's paradox: if $d \ge 3$, regularization moves us closer to 'true' w.
 - 7. In the worst case you just set λ small and get the same performance.

(pause)

Parametric vs. Non-Parametric

- Polynomials are not the only possible bases:
 - Common to use exponentials, logarithms, trigonometric functions, etc.
 - The right basis will vastly improve performance.
 - But when you have a lot of features, the right basis may not be obvious.
- The above bases are parametric model:
 - The size of the model *does not depend* on the number of training examples 'n'.
 - As 'n' increases, you can estimate the model more accurately.
 - But at some point, more data doesn't help because model is too simple.
- Alternative is non-parametric models:
 - Size of the model grows with the number of training examples.
 - Model gets more complicated as you get more data.
 - You can model very complicated functions where you don't know the right basis.

Non-Parametric Basis: RBFs

- Radial basis functions (RBFs):
 - Non-parametric bases that depend on distances to training points.
- Most common example is Gaussian or squared exponential:

Where did constant outra go?

-<u>not needed</u>: WTxi= (+w)^T(cxi) Non-Parametric Basis: RBFs function depends on all original features:

Notei each basis

 $||x - x_i||^2 = \sum_{i=1}^{d} (x_i - x_i)^2$

- Radial basis functions (RBFs):
 - Non-parametric bases that depend on distances to training points.
- Most common example is Gaussian or squared exponential:

Gaussian RBFs are universal approximators (compact subets of R^d)
 – Can approximate any continuous function to arbitrary precision.

Non-Parametric Basis: RBFs

• RBF basis for different values of σ:

RBFs, Regularization, and Validation

• Very effective model:

– RBF basis with L2-regularization and cross-validation to choose σ and λ .

Expensive at test time: need distance to all training examples.

RBFs, Regularization, and Validation

• RBF basis with L2-regularization for different values of σ and λ .

• At least one of these models is often a good fit.

(pause)

Alternatives to Squared Error

- Squared error is computationally convenient choice:
 - Solution involves solving a linear system.

 $W = \left(X^{T} X + J I \right)^{-1} X^{T} Y$

- But it's usually not the right choice:
 - Corresponds to assuming error are normally distributed (later in lecture).
 - Makes it sensitive to outliers or large errors.
 - Makes it inappropriate with restrictions on y (like binary or censored).
- There are many alternatives to squared error.
 - But these have computational implications.

- Consider fitting least squares with an outlier in the labels:
 - Observation that is unusually different from the others.

•		Egg	Milk	Fish	Wheat	Shellfish	Peanuts	 lgE
Pay		0	0.7	0	0.3	0	0	700
Pay	2	0.3	0.7	0	0.6	0	0.01	740
	3	0	0	0	0.8	0	0	50
Day Day	Y	0.3	0.7	1.2	0	0.10	0.01	40000
12 00 9	I							

- Some sources of outliers:
 - Errors, contamination of data from different distribution, rare events.

• Consider fitting least squares with an outlier in the labels: X C "outlier": it's not like the others.

This is probably what we want.

• Consider fitting least squares with an outlier in the labels:

this is what least Squares will actually do!

• Least squares is very sensitive to outliers.

• Squaring error shrinks small errors, and magnifies large errors:

• Outliers (large error) influence 'w' much more than other points.

Outliers (large error) influence 'w' much more than other points. • - Good if outlier means 'plane crashes', bad if it means 'data entry error'.

Robust Regression

- Robust regression objectives put less focus on far-away points.
- For example, just use absolute error:

$$\begin{array}{c} \alpha r q min \\ w e R^{d} \\ i = 1 \end{array} \begin{bmatrix} n & T \\ w & X_{i} \\ - & Y_{i} \end{bmatrix}$$

• Now decreasing 'small' and 'large' errors is equally important.

argmin || Xw - yll,

• In matrix notation, we can write this as minimizing L1-norm:

$$\begin{aligned} \|r\|_{i} &= \sum_{i=1}^{n} |r_{i}| \\ r' & have elements \\ r_{i} &= w^{T}x_{i} - y_{i} \\ so & r &= \chi_{w} - y \end{aligned}$$

Squared Error vs. Absolute Error

• Comparing squared error absolute error:

Regression with the L1-Norm

• Unfortunately, minimizing the absolute error is harder:

- Generally, harder to minimize non-smooth than smooth functions.
- But we can formulate minimize absolute error as a linear program.

Converting into Constrained Problems

- Key observation:
 - Absolute value is maximum of smooth functions: $|w| = \max \{w_2 w\}$
- We can convert to minimizing smooth function with constraints:
 - 1. Replace maximum with new variable, constrained to upper-bound max.
 - 2. Replace individual constraint with constraint for each element of max.

Minimizing Absolute Error as Linear Program

• We can apply the same steps to a sum of max functions:

$$\begin{array}{l} \left| w^{T}x_{i} - y_{i} \right| \ll \operatorname{argmin}_{i=1}^{n} \max \left\{ w^{T}x_{i} - y_{i}y_{i} - w^{T}x_{i} \right\} \\ \ll \mathbb{R}^{d} \underset{i=1}{\overset{i=1}{\underset{$$

- This is a linear program:
 - Minimizing a linear function subject to linear constraints.
 - We can efficiently solve 'medium-sized' linear programs: Matlab's 'linprog'.
 - There are other linear program formulations of this problems.

'Brittle' Regression

- What if you really care about getting the outliers right?
 - You want best performance on worst training example.
 - For example, if in worst case the plane can crash.
- In this case you can use something like the infinity-norm:

• Very sensitive to outliers (brittle), but worst case will be better.

Robust vs. Brittle Regression

- We said that squared error is sensitive to outliers:
 - Absolute error is less sensitive: can be solved as a linear program.
 - Maximum error is more sensitive: can also be solved as linear program.

X

Very Robust Regression?

• Can we be more robust?

- Very robust: eventually "gives up" on large errors.
- But finding optimal 'w' is NP-hard.
 - Absolute value is the most robust that is not NP-hard.

The 'Best' Machine Learning Model

- What is the 'best' machine learning model?
 - SVMs? Random forests? Deep learning?
- No free lunch theorem:
 - There is no 'best' model that achieves the best test error for every problem.
 - If model A works better than model B on one dataset, there is another dataset where model B works better.
- Asking what is the 'best' machine learning model is like asking which is 'best' among "rock", "paper", and "scissors".
- Caveat of no free lunch (NFL) theorem:
 - The world is very structured, some datasets are more likely than others.
 - Model A could be better than model B on a huge variety of practical applications.
- Machine learning emphasizes models useful across applications.

Last Time: Robust Regression

- We said that squared error is sensitive to outliers:
 - Absolute error is less sensitive: can be solved as a linear program.

Motivation: Identifying Important E-mails

- We have a big collection of e-mails:
 - Marked as 'important' if user took some action based on them.

- We want to write a program that identifies 'important' e-mails?
- Can we formulate as supervised learning?
Supervised Learning Representation for E-mails

- For e-mail 'i', the target label y_i is binary:
 - +1: "e-mail is important".
 - -1: "e-mail is not important".
 - Classification: supervised learning with discrete labels.
- What are the right features x_i (basis) for e-mails?
 - Use bag of words:
 - "CPSC", "Expedia", "vicodin".
 - Binary "Expedia" feature is 1 if phrase "Expedia" is in the message, and 0 otherwise.
 - Could add phrases:
 - "you're a winner", "CPSC 540".
 - Could add regular expressions:
 - <recipient name>, <sender domain == "mail.com">

Supervised Learning Representation for E-mails

- Can we make personalized predictions?
 - Some messages 'universally' important:
 - "This is your mother, something terrible happened, give me a call ASAP."
 - Some messages may be important to one user but not others.

Predicting Importance of E-mail For New User

- Consider a new user:
 - Start out with no information about them.
 - Use global features to predict what is important to generic user. Yi= sign(wg xg) features/parameters shared across all users
- With more data, update global features and user's local features:
 - Local features make prediction personalized.
- ediction personanzes. $y_i = sign(w_g x_g + w_h x_h) = features/parameters specific$ to user "u".• G-mails system: classification with logistic regression.

Classification Using Regression?

- Usual approach to do binary classification with regression:
 Code y_i as '+1' for one class and '-1' for the other class.
- Fit a linear regression model:

$$\begin{split} \stackrel{\wedge}{F_{\lambda}} &= W_{1} X_{\lambda 1} + W_{\lambda} X_{\lambda 2} + \dots + W_{d} X_{\lambda d} \\ &= W^{\top} X_{\lambda} \end{split}$$

• Classify by take the sign (i.e., closer '-1' or '+1'?):

$$\stackrel{\wedge}{\underset{i}{\succ}} = \operatorname{sign}(w^{\intercal} \chi_{i}).$$

Classification using Regression

Classification using Regression

- Can use our tricks (e.g., RBF basis, regularization) for classification.
- But, usual error functions do weird things:

Classification Using Regression

• What went wrong?

0-1 Loss Function and Tractable Approximations

- The 0-1 loss function is the number of errors after taking the sign.
 - If a perfect classifier exists, you can find one as a linear program.
 - Otherwise, it's NP-hard to minimize 0-1 loss:
 - We do not expect that efficient algorithms exist.
- Tractable alternatives to 0-1 loss:
 - Hinge loss: upper-bound on 0-1 loss that can be written as linear program.
 - Logistic loss: differentiable function similar to hinge loss.

0-1 Loss Function and Tractable Approximations

0-1 Loss Function and Tractable Approximations loss' for predictivy y, when frue label is y_=-1. "hinge" loss: < 1055 -prediction Il logistic lossi

Hinge Loss and Support Vector Machines

• Hinge loss is given by:

$$\min_{\substack{x \in \mathbb{R}^d}} \sum_{i=1}^n \max_{\substack{x \in \mathbb{Z}^d \\ x \in \mathbb{Z}^d}} \sum_{j=1}^n \sum_{i=1}^n \sum_{j=1}^n \sum_{j=1}^n \sum_{j=1}^n \sum_{i=1}^n \sum_{j=1}^n \sum_{i=1}^n \sum_{j=1}^n \sum_{j=$$

- Can be written as a linear program using our max trick.
- Solution will be a perfect classifier, if one exists.

W

• Support vector machine (SVM) is hinge loss with L2-regularization.

$$\begin{array}{c} \text{argmin} \\ \text{wered} \end{array}_{i=1}^{n} \\ \text{max} \left\{ 0, \left| -y_{i} \right| \\ \text{wTx}_{i} \right\} \\ + \frac{1}{2} \left| \left| w \right| \right|^{2} \end{array}$$

- Can be written as a quadratic program using our max trick
 - Quadratic objective with linear constraints.
- Solution will be perfect classifier, if one exists and λ is small enough.
- Maximizes margin: maximizes distance of data to decision boundary.

Logistic Regression

• Logistic regression minimizes logistic loss:

$$\frac{\alpha \operatorname{romin}}{\operatorname{werk}^{d}} \sum_{j=1}^{n} \log(1 + \exp(-y_{j} w^{T} x_{j}))$$

- You can/should also add regularization: $\begin{array}{l} \operatorname{Argmin}_{w \in \mathbb{R}^d} \quad \sum_{j=1}^{n} \log(1 + exp(-y_j w^T x_j)) + \frac{1}{2} \|u\|^2 \\ \end{array}$
- These can't be written as linear/quadratic programs:
 - But they're differentiable: we'll discuss how to solve them next time.

Logistic Regression and SVMs

- SVMs and logistic regression are used EVERYWHERE!
- Why?
 - Training and testing are both fast, even for "large-scale" problems.
 - It is easy to understand what the weights ' w_i ' mean.
 - With high-dimensional features and regularization, often good test error.
 - Otherwise, often good test error with RBF basis and regularization.
 - For logistic regression, predictions have probabilistic interpretation.

If
$$p(y_i = +||w_i x_i) = sign(w_i x_i)$$
 then minimizing logisfic loss corresponds to
 $v_{sigm(2)} = \frac{1}{1 + exp(-2)}$

Discussion: Probabilistic Interpretation

- Why is probabilistic interpretation important?
 - We can return a probabilistic prediction:

Instead of $\hat{y}_i = 1$, say that $p(\hat{y}_i = 1 | w_i x_i) = 77\%$ $\underbrace{\text{Or}}_{p(\hat{y}_i} = 1 | w_i x_i) = 51\%$

- For complicated y_i , it may be easier to define probability than loss.
- We can talk about maximizing utility:

Predict / True	True 'spam'	True 'not spam'
Predict 'spam'	TP: 0	FP: 100
Predict 'not spam'	FN: 10	TN: 0
$E\left[C\left(\hat{y}_{i}=spam\right)\right]=p(y_{i}=spam\left[x_{i}\right)C\left(\hat{y}_{i}=spam_{y}y_{i}=spam\right)$ + $p(y_{i}=not spam]x_{i})C\left(\hat{y}_{i}=spam_{y}y_{i}=not spam$		

Predict "not spam" even if $y_i =$ "spam" if expected cost of "not spam" is lower.

Maximum Likelihood and MAP Estimation

- Unregularized logistic regression is maximum likelihood solution:
 - Maximize likelihood of data given model parameters.
 - Problem with maximum likelihood:
 - data could be very likely in some very unlikely model from family.
 - E.g., complex model overfits by memorizing the data.
- Regularized logistic regression is MAP (maximum a posteriori):

- Model is a random variable, and we need to find most likely model.
- Can take into account that complex models are likely to overfit.

Multi-Class Logistic Regression

• Supposed y_i takes values from an unordered discrete set of classes.

- Standard model:
 - Use a 'd'-dimensional weight vector ' w_c ' for each class 'c'.
 - Try to make inner-product $w_c^T x_i$ big when 'c' is the true label ' y_i '.
 - Classify by finding largest inner-product: $\Lambda_{\gamma_i} = \alpha_{\gamma_c} \chi_i \xi_{w_c} \chi_i \xi_{w_c}$

(Also exist models for ordered classes or count data)

http://simpsons.wikia.com/wiki/Simpsons_Wiki

Course Roadmap

- Part 1: Overview of Machine Learning
 - Linear models: change of basis, regularization, loss functions.
 - Basics of learning theory: Training vs. test error, bias-variance, fundamental trade-off, no free lunch.
 - Probabilistic learning principles: Maximum likelihood, MAP estimation, loss functions.
- Part 2: Large-scale machine learning.
 - Why are SVMs/logistic easy while minimizing number of errors is hard?
 - How do we fit these models to huge datasets?

Summary

- Regularization: allows complicated models by penalizing complexity.
- Radial basis functions: non-parametric universal basis.
- Robust regression models: more suitable when we have outliers.
- Converting non-smooth problems to constrained smooth problems.
- No free lunch: there is no 'best' machine learning model.
- SVMs and logistic regression: more suitable losses for classification.
- MLE and MAP: probabilistic interpretation to losses/regularizers.
- Softmax loss to model discrete yi, other losses can be derived.
 - Next time: Why is logistic easy while minimizing number of errors is hard?