
SVAN 2016 Mini Course: Stochastic Convex
Optimization Methods in Machine Learning

Mark Schmidt

University of British Columbia, May 2016

www.cs.ubc.ca/~schmidtm/SVAN16

Some images from this lecture are taken from Google Image Search.

Big Data Phenomenon

• We are collecting and storing data at
an unprecedented rate.

• Examples:
– News articles and blog posts.

– YouTube, Facebook, and WWW.

– Credit cards transactions and Amazon purchases.

– Gene expression data and protein interaction assays.

– Maps and satellite data.

– Large hadron collider and surveying the sky.

– Phone call records and speech recognition results.

– Video game worlds and user actions.

Machine Learning

• What do you do with all this data?

– Too much data to search through it manually.

• But there is valuable information in the data.

– Can we use it for fun, profit, and/or the greater good?

• Machine learning: use computers to automatically detect patterns
in data and make predictions or decisions.

• Most useful when:

– Don’t have a human expert.

– Humans can’t explain patterns.

– Problem is too complicated.

Machine Learning vs. Statistics

• Machine learning (ML) is very similar to statistics.

– A lot of topics overlap.

• But ML places more emphasis on:

1. Computation and large datasets.

2. Predictions rather than descriptions.

3. Non-asymptotic performance.

4. Models that work across domains.

• The field is growing very fast:

– ~2500 attendees at NIPS 2014, ~4000 at NIPS 2015.

– Influence of $$$, too.

Applications

• Spam filtering.

• Credit card fraud detection.

• Product recommendation.

• Motion capture.

• Machine translation.

• Speech recognition.

• Face detection.

• Object detection.

• Sports analytics.

Applications

• Personal Assistants.

• Medical imaging.

• Self-driving cars.

• Scene completion.

• Image search and annotation.

• Artistic rendering.

• Your research?

Course Outline (Approximate)
• Day 1:

– L1: Linear regression, nonlinear bases.
– L2: Validation, regularization.

• Day 2:
– L3: Loss functions, convex functions

• Day 3:
– L4: Gradient methods, L1-regularization
– L5: Coordinate optimization, structure sparsity.

• Day 4:
– L6: Projected-gradient, proximal-gradient

• Day 5:
– L7: Stochastic subgradient, stochastic average gradient.
– L8: Kernel trick, Fenchel duality.

• If time allows:
– Alternating minimization, non-uniform sampling, parallelization, non-convex.

Motivating Example: Food Allergies

• You frequently start getting an upset stomach

• You suspect an adult-onset food allergy.

http://www.cliparthut.com/upset-stomach-clipart-cn48e5.html

Motivating Example: Food Allergies

• You start recording food and IgE levels each day:

• We want to write a program that:

– Takes food levels for the day as an input.

– Predicts IgE level for the day as the output.

• But foods interact: ‘formula’ mapping foods to IgE is hard to find:

– Given the data, we could use machine learning to write this program.

– The program will predict target (IgE levels) given features (food levels).

Egg Milk Fish Wheat Shellfish Peanuts …

0 0.7 0 0.3 0 0

0.3 0.7 0 0.6 0 0.01

0 0 0 0.8 0 0

0.3 0.7 1.2 0 0.10 0.01

IgE

700

740

50

950

Supervised Learning

• This is an example of supervised learning:

– Input is ‘n’ training examples (xi, yi).

– xi is the features for example ‘i’ (we’ll use ‘d’ as the number of features).

• In this case, the quantities of food eaten on day ‘i’.

– yi is target for example ‘i’.

• In this case, the level of IgE.

– Output is a function mapping from xi space to yi space.

Supervised Learning

• Supervised learning is most successful ML method:

– Spam filtering, Microsoft Kinect, speech recognition, object detection, etc.

• Most useful when:

– You don’t know how to map from inputs to outputs.

– But you have a lot of input-to-output examples.

• When yi is continuous, it’s called regression.

• Today, we consider the special case of linear regression:

Linear Regression

• Linear regression:

– Prediction is weighted sum of features:

http://www.cvgs.k12.va.us:81/digstats/main/inferant/d_regrs.html
https://onlinecourses.science.psu.edu/stat501/node/11
http://www.vox.com/2015/10/3/9444417/gun-violence-united-states-america

Least Squares

• Supervised learning goal:

• Can we choose weights to make this happen?

• The classic way to do is minimize square error:

Least Squares Objective

• Classic procedure: minimize squared error:

Least Squares Objective

• Classic procedure: minimize squared error:

Least Squares Objective

• Why squared error?

– There is some theory justifying this choice:

• Errors follow a normal distribution.

• Central limit theorem.

– Computation: quadratic function, so easy to minimize.

• How do we calculate the optimal ‘w’?

– The error is a convex quadratic function of ‘w’.

– We can take the gradient and set it to zero.

Least Squares (Vector Notation)

• So our objective is to minimize

in terms of ‘w’, where we have:

• Written with summation notation:

• Observe that prediction is inner product.

• This lets us write objective as:

Least Squares (Matrix Notation)

• So least squares using vectors ‘w’ and ‘xi’ is:

• To derive solution, need matrix notation:

• Where:

– Each row of feature matrix ‘X’ is an ‘xi
T’.

– Element ‘i’ of target vector ‘y’ is ‘yi’.

– ||z|| is the Euclidean norm.

Least Squares (Matrix Notation)

• Where:

– Each row of feature matrix ‘X’ is an ‘xi
T’.

– Element ‘i’ of target vector ‘y’ is ‘yi’.

– ||z|| is the Euclidean norm.

Gradient Vector

• Deriving least squares solution:

– Set gradient equal to zero and solve for ‘w’.

• Recall gradient is vector of partial derivatives:

• Gradients appear a lot in ML.

Digression: Linear Functions

• A linear function of ‘w’ is a function of the form:

• Gradient of linear function in matrix notation:

1. Convert to summation notation:

2. Take generic partial derivative:

3. Assemble into vector and simplify:

Digression: Quadratic Functions

• A quadratic function ‘w’ is a function of the form:

• Gradient of quadratic function in matrix notation:

Least Squares Solution – Part 1

• Our least squares problem is:

• We’ll expand:

Least Squares Solution – Part 2

• So our objective function can be written:

• Using our two tedious matrix calculus exercises:

• Setting the gradient equal to zero:

Least Squares Solution – Part 3

• So finding a least solution means finding a ‘w’ satisfying:

• What is the cost of computing this?

1. Forming XTy costs O(nd).

2. Forming XTX costs O(nd2).

3. Solving a ‘d’ by ‘d’ linear system costs O(d3).

• If we use LU decomposition (AKA Gaussian elimination).

– Total cost: O(nd2 + d3).

• We can solve “medium-size” problems (n = 10k, d = 1000).

• We can’t solve “large” problems (n = 100k, d = 10m).

Least Squares in 2-Dimensions

Least Squares in 2-Dimensions

Problem with Linear Least Squares

• Least squares is very old and widely-used.
– But it usually works terribly.

• Issues with least squares model:
– It assumes a linear relationship between xi and yi.

– It might predict poorly for new values of xi.

– XTX might not be invertible.

– It is sensitive to outliers.

– It might predict outside known range of yi values.

– It always uses all features.

– ‘d’ might be so big we can’t store XTX.

• We’re going to start fixing these problems.

First Problem: y-intercept

First Problem: y-intercept

First Problem: y-intercept

Simple Trick to Incorporate Bias Variable

• Simple way to add y-intercept is adding column of ‘1’ values:

• The first element of least squares now represents the bias β:

Change of Basis

• This “change the features” trick also allows us to fit non-linear models.

• For example, instead of linear we might want a quadratic function:

• We can do this by changing X (change of basis):

• Now fit least squares with this matrix:

• Model is a linear function of w, but a quadratic function of xi.

Change of Basis

General Polynomial Basis

• We can have polynomial of degree ‘p’ by using a basis:

• Numerically-nicer polynomial bases exist:

– E.g., Lagrange polynomials.

Error vs. Degree of Polynomial

• Note that polynomial bases are nested:
– I.e., model with basis of degree 7 has degree 6 as a special case.

• This means that as the degree ‘d’ increases, the error goes down.

• So does higher-degree always mean better model?

http://www.cs.ubc.ca/~arnaud/stat535/slides5_revised.pdf

Training vs. Testing

• We fit our model using training data where we know yi:

• But we aren’t interested performance on this training data.

• Our goal is accurately predicts yi on new test data:

Egg Milk Fish Wheat Shellfish Peanuts …

0 0.7 0 0.3 0 0

0.3 0.7 0 0.6 0 0.01

0 0 0 0.8 0 0

IgE

700

450

175

X = y =

Egg Milk Fish Wheat Shellfish Peanuts …

0.5 0 1 0.6 2 1

0 0.7 0 1 0 0

Sick?

?

?
Xtest = ytest =

Training vs. Testing

• We usually think of supervised learning in two phases:

1. Training phase:

• Fit a model based on the training data X and y.

2. Testing phase:

• Evaluate the model on new data that was not used in training.

• In machine learning, what we care about is the test error!

• Memorization vs learning:

– Can do well on training data by memorizing it.

– You’ve only “learned” if you can do well in new situations.

Error vs. Degree of Polynomial

• As the polynomial degree increases, the training error goes down.

• The test error also goes down initially, then starts going up.
– Overfitting: test error is higher than training error.

http://www.cs.ubc.ca/~arnaud/stat535/slides5_revised.pdf

Golden Rule of Machine Learning

• Even though what we care about is test error:

– YOU CANNOT USE THE TEST DATA DURING TRAINING.

• Why not?

– Finding the model that minimizes the test error is the goal.

– But we’re only using the test error to gauge performance on new data.

– Using it during training means it doesn’t reflect performance on new data.

• If you violate golden rule, you can overfit to the test data:

http://www.technologyreview.com/view/538111/why-and-how-baidu-cheated-an-artificial-intelligence-test/

Is Learning Possible?

• Does training error say anything about test error?

– In general, NO!

– Test data might have nothing to do with training data.

• In order to have any hope of learning we need assumptions.

• A standard assumption is that training and test data are IID:

– “Independent and identically distributed”.

– New examples will behave like the existing objects.

– The order of the examples doesn’t matter.

– Rarely true in practice, but often a good approximation.

• Field of learning theory examines learnability.

Fundamental Trade-Off

• Learning theory results tend to lead to a fundamental trade-off:
1. How small you can make the training error.

vs.
2. How well training error approximates the test error.

• Different models make different trade-offs.
• Simple models (low-degree polynomials):

– Training error is good approximation of test error:
• Not very sensitive to the particular training set you have.

– But don’t fit training data well.

• Complex models (high-degree polynomials):
– Fit training data well.
– Training error is poor approximation of test error:

• Very sensitive to the particular training set you have.

Back to reality…

• How do we decide polynomial degree in practice?

• We care about the test error.

• But we can’t look at the test data.

• So what do we do?????

• One answer:

– Validation set: save part of your dataset to approximate the test error.

• Randomly split training examples into ‘train’ and ‘validate’:

– Fit the model based on the ‘train’ set.

– Test the model based on the ‘validate’ set.

Validation Error

Validation Error

Validation Error

Validation Error

• If training data is IID, validation set is gives IID samples from test set:
– Unbiased test error approximation.

• But in practice we evaluate the validation error multiple times:

• In this setting, it is no longer unbiased:
– We have violated the golden rule, so we can overfit.
– However, often a reasonable approximation if you only evaluate it few times.

Cross-Validation

• Is it wasteful to only use part of your data to select degree?

– Yes, standard alternative is cross-validation:

• 10-fold cross-validation:

– Randomly split your data into 10 sets.

– Train on 9/10 sets, and validate on the remaining set.

– Repeat this for all 10 sets and average the score:

https://chrisjmccormick.wordpress.com/2013/07/31/k-fold-cross-validation-with-matlab-code/

Cross-Validation Theory

• Cross-validation uses more of the data to estimate train/test error.

• Does CV give unbiased estimate of test error?

– Yes: each data point is only used once in validation.

– But again, assuming you only compute CV score once.

• What about variance of CV?

– Hard to characterize.

• Variance of CV on ‘n’ examples is worse than variance if with‘n’ new examples.

• But we believe it is close.

Summary

• Supervised learning: using data to learn input:output map.

• Least squares: classic approach to linear regression.

• Nonlinear bases can be used to relax linearity assumption.

• Test error is what we want to optimize in machine learning.

• Golden rule: you can’t use test data during training!

• Fundamental trade-off: Complex models improve training error, but
training error is a worse approximation of test error.

• Validation and cross-validation: practical approximations to test error.

• Next session: dealing with e-mail spam.

