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Big Data Phenomenon

 We are collecting and storing data at
an unprecedented rate.

 Examples:
— News articles and blog posts.
— YouTube, Facebook, and WWW.
— Credit cards transactions and Amazon purchases.
— Gene expression data and protein interaction assays.
— Maps and satellite data.
— Large hadron collider and surveying the sky.
— Phone call records and speech recognition results.
— Video game worlds and user actions.




Machine Learning

What do you do with all this data?

— Too much data to search through it manually.

But there is valuable information in the data.

— Can we use it for fun, profit, and/or the greater good?

Machine learning: use computers to automatically detect patterns
in data and make predictions or decisions.
Most useful when:

— Don’t have a human expert.
— Humans can’t explain patterns.

— Problem is too complicated.



Machine Learning vs. Statistics

 Machine learning (ML) is very similar to statistics.

— A lot of topics overlap.

 But ML places more emphasis on:
1. Computation and large datasets.
2. Predictions rather than descriptions.
3. Non-asymptotic performance.
4. Models that work across domains.

* The field is growing very fast:
— ~2500 attendees at NIPS 2014, ~4000 at NIPS 2015.

— Influence of SSS, too.



Applications

Spam filtering.
Credit card fraud detection.
Product recommendation.
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Motion capture.
Machine translation.
Speech recognition.
Face detection.
Object detection.
Sports analytics.
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Course Outline (Approximate)

Day 1:

— L1: Linear regression, nonlinear bases.

— L2: Validation, regularization.

Day 2:

— L3: Loss functions, convex functions

Day 3:

— L4: Gradient methods, L1-regularization

— L5: Coordinate optimization, structure sparsity.
Day 4.

— L6: Projected-gradient, proximal-gradient
Day 5:

— L7: Stochastic subgradient, stochastic average gradient.
— L8: Kernel trick, Fenchel duality.
If time allows:

— Alternating minimization, non-uniform sampling, parallelization, non-convex.



Motivating Example: Food Allergies

* You frequently start getting an upset stomach
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* You suspect an adult-onset food allergy.



Motivating Example: Food Allergies

* You start recording food and IgE levels each day:
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* We want to write a program that:

— Takes food levels for the day as an input.

— Predicts IgE level for the day as the output.
e But foods interact: ‘formula’ mapping foods to IgE is hard to find:

— Given the data, we could use machine learning to write this program.
— The program will predict target (Igk levels) given features (food levels).



Supervised Learning

* This is an example of supervised learning:

— Input is ‘n’ training examples (x,, y) /\/M
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— X, is the features for example ‘i’ (we’ll use ‘d’ as the number of features).

* In this case, the quantities of food eaten on day ‘i’

— vy, is target for example i’

* In this case, the level of IgE.

— Output is a function mapping from x. space to y, space.
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Supervised Learning

e Supervised learning is most successful ML method:
— Spam filtering, Microsoft Kinect, speech recognition, object detection, etc.

 Most useful when:
— You don’t know how to map from inputs to outputs.

— But you have a lot of input-to-output examples. More peants = mare €

* Wheny, is continuous, it’s called regression.

* Today, we consider the special case of linear regression:
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Linear Regression

* Linear regression:

— Prediction is weighted sum of features:
N
—7)/(:: Wl><,‘[+VV2X,'l +W3X)‘3 + - -—I-\/\/lel.d

™ 2
gt o)
(f)[\‘o’olidmf\]flor _‘j‘:/j\;(i@j; ;7[ “FeoﬂLvuff Q 7[\01/‘ €>(Ol'/‘/)/o/e l].l

@XCXMF)Q ]

Skin cancer mortality versus State latitude Gun ownership vs. gun deaths, by state
T 20  GUN DEATHS

=@ b = 00,000 . —
=] y=389_2—5_98;{ °,"| Alihagm T D
= 6+ N Oklahoma .‘”‘I,'x‘v-..n il gronans

oo L E 200 TPl QW ox
= , Ml ¥ St ey oY
€ Flodda® s @ NoahTa '
EL Nt ! ado@® 3

100 + o T e — . o ot
-I: Per sylvarnia s i w5 "
w10 =t w2 ° T
[ F] g shington Nebraska@ ‘.

75 1 = w ®New Hampshire  €q
._|:=="- erseye @ .”.v,;_

- s i
£ 1o ® o
) [ ]
t } t =
a0 100 120 l J : ' T J J J ° % 26 30 a0 56
27 a0 a3 36 gl T 45 4277 gunownersHie (% OF HOUSEHOLDS )

Srnoking Latitude (at center of state)



Least Squares

* Supervised learning goal:
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 Can we choose weights to make this happen?
* The classic way to do is minimize square error:
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Least Squares Objective

e Classic procedure: minimize squared error:
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Least Squares Objective

e Classic procedure: minimize squared error:
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Least Squares Objective

 Why squared error?
— There is some theory justifying this choice:

* Errors follow a normal distribution.
e Central limit theorem.

— Computation: quadratic function, so easy to minimize.
* How do we calculate the optimal ‘w’?

— The error is a convex quadratic function of ‘w’.
— We can take the gradient and set it to zero.
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Least Squares (Vector Notation)

e So our objective is to minimize
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Least Squares (Matrix Notation)

* So least squares using vectors ‘w’ and ‘x;’ is:

n
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* To derive solution, need matrix notation:
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— | |z] | is the Euclidean norm.
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Gradient Vector

* Deriving least squares solution:

— Set gradient equal to zero and solve for ‘w’.

e Recall gradient is vector of partial derivatives:
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* Gradients appear a lot in ML.



Digression: Linear Functions

e Alinear function of ‘W’ is a function of the form:

flw)=alw T4

vector scalar

e Gradient of linear function in matrix notation:

1. Convert to summation notation: L) = % oow, TP
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Digression: Quadratic Functions

* A guadratic function ‘W’ is a function of the form:
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Least Squares Solution — Part 1

* QOur least squares problem is:
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Least Squares Solution — Part 2

* So our objective function can be written:
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Least Squares Solution — Part 3

* So finding a least solution means finding a ‘w’ satisfying:

_ _ X A b
X X =X o A Ml = (XN )
solye Ay =L
 What is the cost of computing this?
1. Forming X'y costs O(nd).
2. Forming X™X costs O(nd?).
3. Solving a ‘d’ by ‘d’ linear system costs O(d3).
* If we use LU decomposition (AKA Gaussian elimination).

— Total cost: O(nd? + d3).

* We can solve “medium-size” problems (n = 10k, d = 1000).
* We can’t solve “large” problems (n = 100k, d = 10m).
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Least Squares in 2-Dimensions
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Problem with Linear Least Squares

* Least squares is very old and widely-used.
— But it usually works terribly.

* |ssues with least squares model:
— It assumes a linear relationship between x, and y..
— It might predict poorly for new values of x..
— X"™X might not be invertible.
— It is sensitive to outliers.
— It might predict outside known range of y; values.
— It always uses all features.
— ‘d’ might be so big we can’t store X'X.

* We're going to start fixing these problemes.



First Problem: y-intercept
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First Problem: y-intercept
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First Problem: y-intercept
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Simple Trick to Incorporate Bias Variable

* Simple way to add y-intercept is adding column of ‘1’ values:
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* The first element of least squares now represents the bias [3:

ﬁ N R .
—_— }lﬁ: W Xi
=(X'¥ ) (X 7>7 W= «VNVL = WoRi) WX WXy T W X
AW = B U) Awom WXt T
w, =p T WTX:’



Change of Basis

This “change the features” trick also allows us to fit non-linear models.
For example, instead of linear we might want a quadratic function:
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Model is a linear function of w, but a quadratic function of x..



Change of Basis
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General Polynomial Basis

* We can have polynomial of degree ‘p’ by using a basis:
3
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* Numerically-nicer polynomial bases exist:

— E.g., Lagrange polynomials.




Error vs. Degree of Polynomial

* Note that polynomial bases are nested:
— |.e., model with basis of degree 7 has degree 6 as a special case.

* This means that as the degree ‘d’ increases, the error goes down.
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Training vs. Testing

* We fit our model using training data where we know y:
Egg | Milk | Fish | Wheat | Shellfish | Peanuts | .. e
0 07 0 03 0 0 200

X= 03 07 0 0.6 0 0.01 Y= 450
0 O 0 0.8 0 0 175

* But we aren’t interested performance on this training data.
* Our goal is accurately predicts y, on new test data:

gg | Wik Fish | Wheat | Shelish | Peanuts | ..
0.5 0 1 0.6 2 1 ?

Xtest = . ytest =

0 0.7 0 1 0 0 ?



Training vs. Testing

* We usually think of supervised learning in two phases:
1. Training phase:

 Fita model based on the training data X and .

2. Testing phase:

Evaluate the model on new data that was not used in training.
* In machine learning, what we care about is the test error!
e Memorization vs learning:

— Can do well on training data by memorizing it.
— You've only “learned” if you can do well in new situations.



Error vs. Degree of Polynomial

* As the polynomial degree increases, the training error goes down.

M=0 M= 1 M=2 M=3

* The test error also goes down initially, then starts going up.
— Overfitting: test error is higher than training error.



Golden Rule of Machine Learning

 Even though what we care about is test error:
— YOU CANNOT USE THE TEST DATA DURING TRAINING.
* Why not?
— Finding the model that minimizes the test error is the goal.
— But we’re only using the test error to gauge performance on new data.

— Using it during training means it doesn’t reflect performance on new data.

* If you violate golden rule, you can overfit to the test data:

bRy
Why and How Baidu Cheated
an Artificial Intelligence Test

Machine learning gets its first cheating scandal.

The sport of training software to act intelligently just got its first cheating scandal. Last month Chinese search
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Is Learning Possible?

Does training error say anything about test error?
— In general, NO!

— Test data might have nothing to do with training data.
In order to have any hope of learning we need assumptions.

A standard assumption is that training and test data are |ID:
— “Independent and identically distributed”.

— New examples will behave like the existing objects.

— The order of the examples doesn’t matter.

— Rarely true in practice, but often a good approximation.

Field of learning theory examines learnability.



Fundamental Trade-Off

Learning theory results tend to lead to a fundamental trade-off:

1. How small you can make the training error.
VS.

2. How well training error approximates the test error.

Different models make different trade-offs.

Simple models (low-degree polynomials):
— Training error is good approximation of test error:
* Not very sensitive to the particular training set you have.
— But don’t fit training data well.
Complex models (high-degree polynomials):
— Fit training data well.

— Training error is poor approximation of test error:
* Very sensitive to the particular training set you have.



Back to reality...

How do we decide polynomial degree in practice?
We care about the test error.
But we can’t look at the test data.

One answer:
— Validation set: save part of your dataset to approximate the test error.
Randomly split training examples into ‘train’” and ‘validate’:

— Fit the model based on the ‘train’ set.
— Test the model based on the ‘validate’ set.



Validation Error
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Validation Error
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Validation Error

* If training data is IID, validation set is gives |ID samples from test set:
— Unbiased test error approximation.

* But in practice we evaluate the validation error multiple times:
Tor degree = 0: D
mode = 51 Ky, degree)
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Now Fix c[%}“"’? and frain on full defesel
* In this setting, it is no longer unbiased:
— We have violated the golden rule, so we can overfit.
— However, often a reasonable approximation if you only evaluate it few times.



Cross-Validation

* |s it wasteful to only use part of your data to select degree?
— Yes, standard alternative is cross-validation:

e 10-fold cross-validation:
— Randomly split your data into 10 sets.
— Train on 9/10 sets, and validate on the remaining set.

— Repeat this for all 10 sets and average the score:

D Validation Set
- Training Set

Round 1 Round 2 Round 3 Round 10

Vldt

Final Accuracy = Average(Round 1, Round 2, .



Cross-Validation Theory

* Cross-validation uses more of the data to estimate train/test error.

* Does CV give unbiased estimate of test error?
— Yes: each data point is only used once in validation.
— But again, assuming you only compute CV score once.

e What about variance of CV?
— Hard to characterize.

e Variance of CV on ‘n” examples is worse than variance if with‘n’ new examples.
* But we believe it is close.



Summary

Supervised learning: using data to learn input:output map.
Least squares: classic approach to linear regression.
Nonlinear bases can be used to relax linearity assumption.
Test error is what we want to optimize in machine learning.
Golden rule: you can’t use test data during training!

Fundamental trade-off: Complex models improve training error, but
training error is a worse approximation of test error.

Validation and cross-validation: practical approximations to test error.

Next session: dealing with e-mail spam.



