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Motivation: Sparse Regularization

Consider `1-regularized optimization problems,

f (x) = g(x) + λ||x ||1,

where g is differentiable.

The objective is non-differentiable when any xi = 0.

Similar non-differentiabilities arise for group `1-regularization,
TV-regularization, nuclear-norm regularization, etc..

How can we solve non-smooth convex optimization problems?
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Sub-Gradients and Sub-Differentials

A vector d is a subgradient of f at x if

f (y) ≥ f (x) + dT (y − x),∀y .

The set of all sub-gradients of f at x is called the
sub-differential, denoted ∂f (x).

For convex f , ∂f (x) is non-empty, convex, and compact.

If f (x) = f1(x) + f2(x), then ∂f (x) = ∂f1(x) + ∂f2(x).

A convex f is differentiable at x iff sub-gradient is unique.

Note that 0 ∈ ∂f (x) implies that x is a global minimum.
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Sub-Differential of `1-Regularization Problem

The sub-differential of `1-regularized optimization problems,

f (x) = g(x) + λ||x ||1,

is the set
∂f (x) = ∇f (x) + λ

∑
i

∂|xi |,

Compute the sub-differential ∂|xi |.
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Exercise: Sub-gradient method

The sub-gradient descent method:

xk+1 = xk − αkdk ,

for some dk ∈ ∂f (xk).
For convergence, we require

∑
i αk =∞ and αk → 0.

Computational exercise: modify the findMin0.m and
regLogistic.m functions to implement a sub-gradient method
for `1-regularized logistic regression.
Theoretical exercise: show that [f (xmin)− f (x∗)] is in
O(1/

√
k) with

αk = ||x0 − x∗||2/G
√

k

provided that for all x we have

||d || ≤ G , ∀d ∈ ∂f (x).

Hints: use definition of xk in ||xk − x∗||2, group together
(xk−1 − x∗), expand, use definition of sub-gradient to
introduce f (xk)− f (x∗), bound sum of f (xmin)− f (x∗).
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Alternatives to Sub-Gradient Method

Some of the most widely-used alternatives to sub-gradient method:

Cutting-plane and bundle methods, still have rate O(1/
√

k).

Smoothing methods, can get rate down to O(1/k).

Proximal-gradient methods, can get rate down to O(1/k2).
(for problems of the form smooth + non-smooth).
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Proximal-Gradient Method

The proximal-gradient method addresses problem of the form

min
x

f (x) = g(x) + h(x),

where g is differentiable but h is a general convex function.

It uses iterations of the form

xk+1 = prox[xk − αk∇g(xk)],

where

prox[x ] = argmin
y

1

2
||x − y ||2 + αkh(y).

Gradient and projected-gradient methods are special cases.

Convergence rate is the same as the gradient method.

Can do many of the same tricks (i.e. Armijo line-search,
polynomial interpolation, Nesterov, Barzilai-Borwein).

Mark Schmidt MLSS 2011 Non-Smooth Optimization



Proximal-Gradient Method

The proximal-gradient method addresses problem of the form

min
x

f (x) = g(x) + h(x),

where g is differentiable but h is a general convex function.

It uses iterations of the form

xk+1 = prox[xk − αk∇g(xk)],

where

prox[x ] = argmin
y

1

2
||x − y ||2 + αkh(y).

Gradient and projected-gradient methods are special cases.

Convergence rate is the same as the gradient method.

Can do many of the same tricks (i.e. Armijo line-search,
polynomial interpolation, Nesterov, Barzilai-Borwein).

Mark Schmidt MLSS 2011 Non-Smooth Optimization



Proximal-Gradient Method

The proximal-gradient method addresses problem of the form

min
x

f (x) = g(x) + h(x),

where g is differentiable but h is a general convex function.

It uses iterations of the form

xk+1 = prox[xk − αk∇g(xk)],

where

prox[x ] = argmin
y

1

2
||x − y ||2 + αkh(y).

Gradient and projected-gradient methods are special cases.

Convergence rate is the same as the gradient method.

Can do many of the same tricks (i.e. Armijo line-search,
polynomial interpolation, Nesterov, Barzilai-Borwein).

Mark Schmidt MLSS 2011 Non-Smooth Optimization



Useful Properties of Proximal-Operator

The following are three useful properties of the prox operator:

Non-expansiveness:

||prox[x ]− prox[y ]|| ≤ ||x − y ||.

Solution is fixed point:

x∗ = prox[x∗ − αk∇g(x∗)].

Relationship to sub-differential:

u = prox(x)⇔ (x − u) ∈ ∂h(u).
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Exercise: Proximal-Gradient Method

The proximal-gradient method:

xk+1 = prox[xk − αk∇g(xk)],

where

prox[x ] = argmin
y

1

2
||x − y ||2 + αkh(y).

Computational Exercise: Modify either the findMinNesterov.m or
findMinScaled.m code from the first session to do proximal-gradient steps
for `1-regularized logistic regression.
Hints: the proximal operator is xi = sign(xi ) max{0, |xi | − λαk}, and you
need to use g(x) for the gradient step but f (x) in the line search.

Theoretical Exercise: Show that if µI � ∇2g(x) � LI for all x , the
proximal-gradient method with a step size of αk = 1/L has a convergence
rate of ||xk − x∗|| ≤ (1− µ/L)k ||x0 − x∗||.
Hints: use the first two properties in ||xk+1 − x∗||2, and that the
assumptions on ∇2g(x) imply

〈∇g(x)−∇g(y), x − y〉 ≥ 1

L + µ
||∇g(x)−∇g(y)||2 +

Lµ

L + µ
||x − y ||2,

and that µI � ∇2g(x) implies −||∇g(xk)−∇g(x∗)||2 ≤ −µ2||xk − x∗||2.
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Steepest Descent for Non-Smooth Optimization

Convex functions have directional derivatives everywhere.

The steepest descent direction minimizes the directional
derivative.

If f is differentiable, the steepest descent direction is −∇f (x).

For general convex functions, the steepest descent direction is

− argmin
d∈∂f (x)

||d ||.
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Exercise: Non-Smooth Steepest Descent

The ‘clipped’ steepest descent method for `1-regularized
optimization:

xk+1 = P[xk − αkdk ],

where
dk = argmin

d∈∂f (x)
||d ||,

and the P operator sets variables to zero that change sign.

Computational Exercise: Modify either the findMinNesterov.m
or findMinScaled.m code from the first session to do ‘clipped’
steepest descent for `1-regularized logistic regression.

Theoretical Exercise: Does this converge without having
αk → 0?
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