
Practical Session on Convex Optimization:
Non-Smooth Optimization

Mark Schmidt

INRIA/ENS

September 2011

Mark Schmidt MLSS 2011 Non-Smooth Optimization

Motivation: Sparse Regularization

Consider `1-regularized optimization problems,

f (x) = g(x) + λ||x ||1,

where g is differentiable.

The objective is non-differentiable when any xi = 0.

Similar non-differentiabilities arise for group `1-regularization,
TV-regularization, nuclear-norm regularization, etc..

How can we solve non-smooth convex optimization problems?

Mark Schmidt MLSS 2011 Non-Smooth Optimization

Motivation: Sparse Regularization

Consider `1-regularized optimization problems,

f (x) = g(x) + λ||x ||1,

where g is differentiable.

The objective is non-differentiable when any xi = 0.

Similar non-differentiabilities arise for group `1-regularization,
TV-regularization, nuclear-norm regularization, etc..

How can we solve non-smooth convex optimization problems?

Mark Schmidt MLSS 2011 Non-Smooth Optimization

Sub-Gradients and Sub-Differentials

A vector d is a subgradient of f at x if

f (y) ≥ f (x) + dT (y − x),∀y .

The set of all sub-gradients of f at x is called the
sub-differential, denoted ∂f (x).

For convex f , ∂f (x) is non-empty, convex, and compact.

If f (x) = f1(x) + f2(x), then ∂f (x) = ∂f1(x) + ∂f2(x).

A convex f is differentiable at x iff sub-gradient is unique.

Note that 0 ∈ ∂f (x) implies that x is a global minimum.

Mark Schmidt MLSS 2011 Non-Smooth Optimization

Sub-Gradients and Sub-Differentials

A vector d is a subgradient of f at x if

f (y) ≥ f (x) + dT (y − x),∀y .

The set of all sub-gradients of f at x is called the
sub-differential, denoted ∂f (x).

For convex f , ∂f (x) is non-empty, convex, and compact.

If f (x) = f1(x) + f2(x), then ∂f (x) = ∂f1(x) + ∂f2(x).

A convex f is differentiable at x iff sub-gradient is unique.

Note that 0 ∈ ∂f (x) implies that x is a global minimum.

Mark Schmidt MLSS 2011 Non-Smooth Optimization

Sub-Gradients and Sub-Differentials

A vector d is a subgradient of f at x if

f (y) ≥ f (x) + dT (y − x),∀y .

The set of all sub-gradients of f at x is called the
sub-differential, denoted ∂f (x).

For convex f , ∂f (x) is non-empty, convex, and compact.

If f (x) = f1(x) + f2(x), then ∂f (x) = ∂f1(x) + ∂f2(x).

A convex f is differentiable at x iff sub-gradient is unique.

Note that 0 ∈ ∂f (x) implies that x is a global minimum.

Mark Schmidt MLSS 2011 Non-Smooth Optimization

Sub-Differential of `1-Regularization Problem

The sub-differential of `1-regularized optimization problems,

f (x) = g(x) + λ||x ||1,

is the set
∂f (x) = ∇f (x) + λ

∑
i

∂|xi |,

Compute the sub-differential ∂|xi |.

Mark Schmidt MLSS 2011 Non-Smooth Optimization

Exercise: Sub-gradient method

The sub-gradient descent method:

xk+1 = xk − αkdk ,

for some dk ∈ ∂f (xk).
For convergence, we require

∑
i αk =∞ and αk → 0.

Computational exercise: modify the findMin0.m and
regLogistic.m functions to implement a sub-gradient method
for `1-regularized logistic regression.
Theoretical exercise: show that [f (xmin)− f (x∗)] is in
O(1/

√
k) with

αk = ||x0 − x∗||2/G
√

k

provided that for all x we have

||d || ≤ G , ∀d ∈ ∂f (x).

Hints: use definition of xk in ||xk − x∗||2, group together
(xk−1 − x∗), expand, use definition of sub-gradient to
introduce f (xk)− f (x∗), bound sum of f (xmin)− f (x∗).

Mark Schmidt MLSS 2011 Non-Smooth Optimization

Exercise: Sub-gradient method

The sub-gradient descent method:

xk+1 = xk − αkdk ,

for some dk ∈ ∂f (xk).
For convergence, we require

∑
i αk =∞ and αk → 0.

Computational exercise: modify the findMin0.m and
regLogistic.m functions to implement a sub-gradient method
for `1-regularized logistic regression.

Theoretical exercise: show that [f (xmin)− f (x∗)] is in
O(1/

√
k) with

αk = ||x0 − x∗||2/G
√

k

provided that for all x we have

||d || ≤ G , ∀d ∈ ∂f (x).

Hints: use definition of xk in ||xk − x∗||2, group together
(xk−1 − x∗), expand, use definition of sub-gradient to
introduce f (xk)− f (x∗), bound sum of f (xmin)− f (x∗).

Mark Schmidt MLSS 2011 Non-Smooth Optimization

Exercise: Sub-gradient method

The sub-gradient descent method:

xk+1 = xk − αkdk ,

for some dk ∈ ∂f (xk).
For convergence, we require

∑
i αk =∞ and αk → 0.

Computational exercise: modify the findMin0.m and
regLogistic.m functions to implement a sub-gradient method
for `1-regularized logistic regression.
Theoretical exercise: show that [f (xmin)− f (x∗)] is in
O(1/

√
k) with

αk = ||x0 − x∗||2/G
√

k

provided that for all x we have

||d || ≤ G , ∀d ∈ ∂f (x).

Hints: use definition of xk in ||xk − x∗||2, group together
(xk−1 − x∗), expand, use definition of sub-gradient to
introduce f (xk)− f (x∗), bound sum of f (xmin)− f (x∗).

Mark Schmidt MLSS 2011 Non-Smooth Optimization

Alternatives to Sub-Gradient Method

Some of the most widely-used alternatives to sub-gradient method:

Cutting-plane and bundle methods, still have rate O(1/
√

k).

Smoothing methods, can get rate down to O(1/k).

Proximal-gradient methods, can get rate down to O(1/k2).
(for problems of the form smooth + non-smooth).

Mark Schmidt MLSS 2011 Non-Smooth Optimization

Proximal-Gradient Method

The proximal-gradient method addresses problem of the form

min
x

f (x) = g(x) + h(x),

where g is differentiable but h is a general convex function.

It uses iterations of the form

xk+1 = prox[xk − αk∇g(xk)],

where

prox[x] = argmin
y

1

2
||x − y ||2 + αkh(y).

Gradient and projected-gradient methods are special cases.

Convergence rate is the same as the gradient method.

Can do many of the same tricks (i.e. Armijo line-search,
polynomial interpolation, Nesterov, Barzilai-Borwein).

Mark Schmidt MLSS 2011 Non-Smooth Optimization

Proximal-Gradient Method

The proximal-gradient method addresses problem of the form

min
x

f (x) = g(x) + h(x),

where g is differentiable but h is a general convex function.

It uses iterations of the form

xk+1 = prox[xk − αk∇g(xk)],

where

prox[x] = argmin
y

1

2
||x − y ||2 + αkh(y).

Gradient and projected-gradient methods are special cases.

Convergence rate is the same as the gradient method.

Can do many of the same tricks (i.e. Armijo line-search,
polynomial interpolation, Nesterov, Barzilai-Borwein).

Mark Schmidt MLSS 2011 Non-Smooth Optimization

Proximal-Gradient Method

The proximal-gradient method addresses problem of the form

min
x

f (x) = g(x) + h(x),

where g is differentiable but h is a general convex function.

It uses iterations of the form

xk+1 = prox[xk − αk∇g(xk)],

where

prox[x] = argmin
y

1

2
||x − y ||2 + αkh(y).

Gradient and projected-gradient methods are special cases.

Convergence rate is the same as the gradient method.

Can do many of the same tricks (i.e. Armijo line-search,
polynomial interpolation, Nesterov, Barzilai-Borwein).

Mark Schmidt MLSS 2011 Non-Smooth Optimization

Useful Properties of Proximal-Operator

The following are three useful properties of the prox operator:

Non-expansiveness:

||prox[x]− prox[y]|| ≤ ||x − y ||.

Solution is fixed point:

x∗ = prox[x∗ − αk∇g(x∗)].

Relationship to sub-differential:

u = prox(x)⇔ (x − u) ∈ ∂h(u).

Mark Schmidt MLSS 2011 Non-Smooth Optimization

Exercise: Proximal-Gradient Method

The proximal-gradient method:

xk+1 = prox[xk − αk∇g(xk)],

where

prox[x] = argmin
y

1

2
||x − y ||2 + αkh(y).

Computational Exercise: Modify either the findMinNesterov.m or
findMinScaled.m code from the first session to do proximal-gradient steps
for `1-regularized logistic regression.
Hints: the proximal operator is xi = sign(xi) max{0, |xi | − λαk}, and you
need to use g(x) for the gradient step but f (x) in the line search.

Theoretical Exercise: Show that if µI � ∇2g(x) � LI for all x , the
proximal-gradient method with a step size of αk = 1/L has a convergence
rate of ||xk − x∗|| ≤ (1− µ/L)k ||x0 − x∗||.
Hints: use the first two properties in ||xk+1 − x∗||2, and that the
assumptions on ∇2g(x) imply

〈∇g(x)−∇g(y), x − y〉 ≥ 1

L + µ
||∇g(x)−∇g(y)||2 +

Lµ

L + µ
||x − y ||2,

and that µI � ∇2g(x) implies −||∇g(xk)−∇g(x∗)||2 ≤ −µ2||xk − x∗||2.

Mark Schmidt MLSS 2011 Non-Smooth Optimization

Exercise: Proximal-Gradient Method

The proximal-gradient method:

xk+1 = prox[xk − αk∇g(xk)],

where

prox[x] = argmin
y

1

2
||x − y ||2 + αkh(y).

Computational Exercise: Modify either the findMinNesterov.m or
findMinScaled.m code from the first session to do proximal-gradient steps
for `1-regularized logistic regression.
Hints: the proximal operator is xi = sign(xi) max{0, |xi | − λαk}, and you
need to use g(x) for the gradient step but f (x) in the line search.

Theoretical Exercise: Show that if µI � ∇2g(x) � LI for all x , the
proximal-gradient method with a step size of αk = 1/L has a convergence
rate of ||xk − x∗|| ≤ (1− µ/L)k ||x0 − x∗||.
Hints: use the first two properties in ||xk+1 − x∗||2, and that the
assumptions on ∇2g(x) imply

〈∇g(x)−∇g(y), x − y〉 ≥ 1

L + µ
||∇g(x)−∇g(y)||2 +

Lµ

L + µ
||x − y ||2,

and that µI � ∇2g(x) implies −||∇g(xk)−∇g(x∗)||2 ≤ −µ2||xk − x∗||2.

Mark Schmidt MLSS 2011 Non-Smooth Optimization

Exercise: Proximal-Gradient Method

The proximal-gradient method:

xk+1 = prox[xk − αk∇g(xk)],

where

prox[x] = argmin
y

1

2
||x − y ||2 + αkh(y).

Computational Exercise: Modify either the findMinNesterov.m or
findMinScaled.m code from the first session to do proximal-gradient steps
for `1-regularized logistic regression.
Hints: the proximal operator is xi = sign(xi) max{0, |xi | − λαk}, and you
need to use g(x) for the gradient step but f (x) in the line search.

Theoretical Exercise: Show that if µI � ∇2g(x) � LI for all x , the
proximal-gradient method with a step size of αk = 1/L has a convergence
rate of ||xk − x∗|| ≤ (1− µ/L)k ||x0 − x∗||.
Hints: use the first two properties in ||xk+1 − x∗||2, and that the
assumptions on ∇2g(x) imply

〈∇g(x)−∇g(y), x − y〉 ≥ 1

L + µ
||∇g(x)−∇g(y)||2 +

Lµ

L + µ
||x − y ||2,

and that µI � ∇2g(x) implies −||∇g(xk)−∇g(x∗)||2 ≤ −µ2||xk − x∗||2.

Mark Schmidt MLSS 2011 Non-Smooth Optimization

Steepest Descent for Non-Smooth Optimization

Convex functions have directional derivatives everywhere.

The steepest descent direction minimizes the directional
derivative.

If f is differentiable, the steepest descent direction is −∇f (x).

For general convex functions, the steepest descent direction is

− argmin
d∈∂f (x)

||d ||.

Mark Schmidt MLSS 2011 Non-Smooth Optimization

Steepest Descent for Non-Smooth Optimization

Convex functions have directional derivatives everywhere.

The steepest descent direction minimizes the directional
derivative.

If f is differentiable, the steepest descent direction is −∇f (x).

For general convex functions, the steepest descent direction is

− argmin
d∈∂f (x)

||d ||.

Mark Schmidt MLSS 2011 Non-Smooth Optimization

Steepest Descent for Non-Smooth Optimization

Convex functions have directional derivatives everywhere.

The steepest descent direction minimizes the directional
derivative.

If f is differentiable, the steepest descent direction is −∇f (x).

For general convex functions, the steepest descent direction is

− argmin
d∈∂f (x)

||d ||.

Mark Schmidt MLSS 2011 Non-Smooth Optimization

Exercise: Non-Smooth Steepest Descent

The ‘clipped’ steepest descent method for `1-regularized
optimization:

xk+1 = P[xk − αkdk],

where
dk = argmin

d∈∂f (x)
||d ||,

and the P operator sets variables to zero that change sign.

Computational Exercise: Modify either the findMinNesterov.m
or findMinScaled.m code from the first session to do ‘clipped’
steepest descent for `1-regularized logistic regression.

Theoretical Exercise: Does this converge without having
αk → 0?

Mark Schmidt MLSS 2011 Non-Smooth Optimization

Exercise: Non-Smooth Steepest Descent

The ‘clipped’ steepest descent method for `1-regularized
optimization:

xk+1 = P[xk − αkdk],

where
dk = argmin

d∈∂f (x)
||d ||,

and the P operator sets variables to zero that change sign.

Computational Exercise: Modify either the findMinNesterov.m
or findMinScaled.m code from the first session to do ‘clipped’
steepest descent for `1-regularized logistic regression.

Theoretical Exercise: Does this converge without having
αk → 0?

Mark Schmidt MLSS 2011 Non-Smooth Optimization

References

Most of this lecture is based on material from Dimitri Bertsekas’
books on optimization and convex analysis, Arkadi Nemirovski’s
“Efficient Methods in Convex Programming”, and Yuri Nesterov’s
“Introductory Lectures on Convex Optimization”.

Mark Schmidt MLSS 2011 Non-Smooth Optimization

