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Motviation: Parameter Estimation with Different Models

@ We have a binary classification problem.

@ We want to try: logistic regression, probit regression,
weighted logistic regression, SVMs, neural nets, kernel
regression, extreme-value regression, etc.

o We might have a software package with most of these, but
what if an important one is missing?
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Motviation: Parameter Estimation with Different Models

We have a binary classification problem.

@ We want to try: logistic regression, probit regression,
weighted logistic regression, SVMs, neural nets, kernel
regression, extreme-value regression, etc.

o We might have a software package with most of these, but
what if an important one is missing?

@ One option is to use a plug-and-play gradient method.

@ Gradient-based methods are for continuous, local optimization
where we can evaluate the function and gradient

@ This lecture: we will implement simple methods of this type.

@ Why? lllustrate basic concepts and fundamental methods that
are building blocks for more advanced methods.
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@ If using Matlab, please download the supporting material
available here:
http://www.di.ens.fr/~mschmidt/MLSS/
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http://www.di.ens.fr/~mschmidt/MLSS/

@ If using Matlab, please download the supporting material

available here:
http://www.di.ens.fr/~mschmidt/MLSS/

@ You may also download the sidoO data set, or you can
generate/load your own data set.
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http://www.di.ens.fr/~mschmidt/MLSS/

Preparing a Data Set

To load this data in Matlab:

>> load(’sidoO_train.mat’);
>> y = load(’sido_train.targets’);

To generate a random data set:

>> X = randn(10000,5000) ;

>> w = randn(5000,1);

>> y = sign(Xxw);

>> flips = rand(10000,1) > .9;
>> y(flips) = -y(flips);
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¢>-Regularized Logistic Regression

@ We focus on /»-regularized logistic regression
(but the code allows an arbitrary differentiable loss)

@ Objective:
)\ n
f(w) = EHWH2 + ) log(1+ exp(—yi(w xi))).
i=1
@ Gradient:

f! =Aw + i i
(W) =AW+ )™

This is implemented in the function reglogistic.m.
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Derivative-Checking

@ Before doing anything, check your derivative code!
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Derivative-Checking

@ Before doing anything, check your derivative code!

@ We will check the first 25 partial derivatives:
>> w = randn(25,1);
>> lambda = 1;
>> [f,g]l = reglogistic(w,X(:,1:25),y,lambda);
>> [f,g2] = autoGrad(w,@reglogistic,X(:,1:25),y,lambda);
>> maxDiff = norm(g-g2,’inf’)
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A Basic Gradient Method

@ The function findMin0.m implements a basic gradient
method:
@ Evaluate the gradient, g := f'(w).
@ Take the step, w = w — ag.
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A Basic Gradient Method

function [w,f] = findMin(funObj,w,maxEvals,alpha)

[f,g] = funObj(w);
funEvals = 1;

while 1
W = W - alphax*g;
[f,g] = funObj(w);
funEvals = funEvals+1;

optCond = norm(g,’inf’);
fprintf (\%6d \%15.5e \%15.5e \%15.5e\n’,funEvals,alpha,f,optCond) ;

if optCond < le-2
break;
end

if funEvals >= maxEvals
break;
end
end
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A Basic Gradient Method

@ Running the method:

>> [nSamples,nVars] = size(X);

>> w = zeros(nVars,1);

>> lambda = 1;

>> funObj = @(w)reglogistic(w,X,y,lambda);
>> findMinO (funObj,w,250,1);
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A Basic Gradient Method

Result with o« = 1:
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Step size is too large.
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A Basic Gradient Method

Result with o = 102:
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4.

Actual progress with this step size, but not monotonic.
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A Basic Gradient Method

Result with o = 107°:
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.12469e+03
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.22771e+03
.21347e+03

34321e+02

This step size yields the best progress.
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A Basic Gradient Method

Result with o = 107 7:
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.61680e+03
.36067e+03
.11815e+03
.88905e+03
.67301e+03
.46955e+03
.27812e+03
.09810e+03
.92885e+03

97410e+02

This step size seems too small to make significant proress.
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Armijo Backtracking Line-Search

@ We don’t want to tune the step size for every new problem.

@ This is why we use a line search.
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Armijo Backtracking Line-Search

@ We don’t want to tune the step size for every new problem.

@ This is why we use a line search.
@ A basic backtracking search:

© Start with a large value of a.
@ Divided « in half if we don't satisfy the Armijo condition:

f(w—ag) < f(w) —yallgl.
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Armijo Backtracking Line-Search

Basic backtracking line search:

wp = w - alphaxg;
[fp,gp] = funObj(wp);
funEvals = funEvals+1;

while fp > f - gamma*alpha*g’*g
alpha = alpha/2;
wp = w - alphaxg;
[fp,gp] = funObj(wp);
funEvals = funEvals+1;

end

W = Wp;
f = fp;
g = Ep;
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Armijo Backtracking Line-Search

Result with ap = 1 and v = 10~*:
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.28797e+03
.39309e+03
.49865e+03
.60605e+03
.72306e+03
.89570e+03
.32969e+03
.22179e+03
.20389e+03
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.52010e+02
.51876e+02
.51459e+02
.49767e+02
.41135e+02
.93456e+02
.14599e+02
.68655e+01
.76510e+01

98571e+01

In this case, backtracking gives better performance than fixed a.
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Armijo Backtracking Line-Search

@ A danger with the simple backtracking is that ay may become
too small to make substantial progress.

@ We can reset oy, on each iteration:

if funEvals > 1
alpha = 1;
end
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Armijo Backtracking Line-Search

Result with resetting to oo = 1:
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.38857e+03
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.52010e+02
.08930e+03
.74485e+02
.92855e+02
.63615e+02
.11060e+01
.46868e+02
.81590e+01
.20607e+02

52162e+01

Each iteration makes more progress, but requires more evaluations.
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Hermite Polynomial Interpolation

@ Step size halving ignores information collected during the
line-search.

@ We can reduce the number of evaluations per iteration using
Hermite polynomial interpolation.

e E.g., we can minimize the quadratic passing through f(w),
f'(w), and f(w — ag):
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Hermite Polynomial Interpolation

@ Step size halving ignores information collected during the
line-search.

@ We can reduce the number of evaluations per iteration using
Hermite polynomial interpolation.

e E.g., we can minimize the quadratic passing through f(w),
f'(w), and f(w — ag):
alpha = alpha~2x*g’*g/(2x(fp + g’*g+*alpha - f));
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Hermite Polynomial Interpolation

Result with resetting to o = 1 quadratic interpolation:
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.06711e+03
.03913e+03
.37769e+03
.22260e+03
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.51353e+02
.43463e+02
.43325e+02
.33995e+02
.08309e+02
.52492e+02
.36125e+02
.84479e+01
.14560e+02

33304e+01

Significantly reduces the number of evaluations per iteration.
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Hermite Polynomial Interpolation

@ Setting o, = 1 is typically too large.
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Hermite Polynomial Interpolation

@ Setting o, = 1 is typically too large.
@ On the first iteration, we can use some heuristic like:
alpha = 1/|Igl|
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Hermite Polynomial Interpolation

@ Setting o, = 1 is typically too large.
@ On the first iteration, we can use some heuristic like:
alpha = 1/|Igl|

@ On subsequent iterations, we can initialize ay with polynomial
interpolation:

alpha = min(1,2*(f_old-f)/(g’*g));

Mark Schmidt MLSS 2011 Differentiable Optimization



Hermite Polynomial Interpolation

Result with quadratic initialization and quadratic interpolation:
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.83619e+03
.65409e+03
.22162e+03
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.07807e+03
.06820e+03

20440e+02

There is now very little backtracking.
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.70173e+01
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.11023e+01
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Hermite Polynomial Interpolation

Practical implementations take these ideas further:
@ Interpolation based on cubic or higher-order interpolation.

@ Line-search based on Wolfe conditions.
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Nesterov Extrapolation

@ One way to enhance the performance of gradient methods is
with Nesterov's exploration step between gradient updates.

@ Also known as accelerated or optimal gradient methods.

@ Extrapolation set to achieve an optimal convergence rate for
convex optimization.

Mark Schmidt MLSS 2011 Differentiable Optimization



Nesterov Extrapolation

@ One way to enhance the performance of gradient methods is
with Nesterov's exploration step between gradient updates.

@ Also known as accelerated or optimal gradient methods.

@ Extrapolation set to achieve an optimal convergence rate for
convex optimization.

@ Based on the simple recursion:

Wkt+1 = yk — af'(yk),

14 /1+4¢2

t =
k41 5
te — 1
Vi1 = Wk + (Wi1 — wk).
ti+1
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Nesterov Extrapolation

t =1;
y =w;
while 1

if funEvals > 1
tp = (1 + sqrt(1+4%t~2))/2;
y = w + ((t-1)/tp)*(w-w_old);
t = tp;
[£,g] = funObj(y);
funEvals = funEvals+1;

end

w_old = w;

wp = y - alphax*g;
[fp,gp] = funObj(wp);
funEvals = funEvals+1;

while fp > f - gamma*alpha*g’*g
alpha = alpha”2*g’*g/(2x(fp + g’*g*alpha - f));
wp = y - alphaxg;
[fp,gp] = funObj(wp);
funEvals = funEvals+1;
end

W = up;
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Nesterov Extrapolation

Result with Nesterov's extrapolation scheme:
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.83619e+03
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.48256e+03
.01470e+03
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.88650e+03
.51905e+02
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.06706e+02
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.45916e+01
.06874e+01

60646e+00

Final function value is nearly cut in half, despite two evaluations

per iteration (various tricks can make this work better).
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Newton's Method

@ The other classical differentiable optimization method is
Newton's method.
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Newton's Method

@ The other classical differentiable optimization method is
Newton's method.

@ Uses the update
Wk+1 = Wk — adg,

where dj is a solution to the system

" (wi)dx = —F'(wg).
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Newton's Method

@ The other classical differentiable optimization method is
Newton's method.

@ Uses the update
Wk+1 = Wk — adg,

where dj is a solution to the system
" (wi)dx = —F'(wg).
o We modify the Armijo condition to
F(wirn) < F(wi) + yauf (wi) T di.

@ Has a natural step length of ay = 1.
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Newton's Method

@ The other classical differentiable optimization method is
Newton's method.

Uses the update
Wk+1 = Wk — adg,

where dj is a solution to the system

" (wi)dx = —F'(wg).

We modify the Armijo condition to

f(Wk+1) < f(Wk) + ’)/Ckkf/(Wk)Tdk.

Has a natural step length of oy = 1.

Simple implementation in findMinNewton.m (do not run this).
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Newton's Method

Running findMinNewton.m:

Our previous methods are still far from the solution.
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.51860e+02
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.40881e+03
.06968e+02
.92354e+02
.45484e+01
.96743e+01
.20043e+01
.60128e+00
.38955e+00
.17531e-01



Newton's Method

@ Newton's method often converges very fast, but with very
expensive iterations.

@ Typically, you need to modify the Hessian to be
positive-definite.
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Newton's Method

@ Newton's method often converges very fast, but with very
expensive iterations.

@ Typically, you need to modify the Hessian to be
positive-definite.

@ Is it possible to get fast convergence like Newton's method,
without the cost?
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Diagonally-Scaled Steepest Descent

e First Newton approximation: use the diagonal of f”(wy).
@ Use reglogisticDiag.m and in findMinNewton.m use:
d = g./H;
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Diagonally-Scaled Steepest Descent

Diagonally-Scaled Steepest Descent:
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.17424e+03
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.46796e+02
.935647e+02
.28681e+02
.11657e+02
.79855e+02
.83633e+02
.75465e+01
.32227e+01
.40304e+02

28719e+01

Substantially more progress than gradient methods, but more
expensive iterations and natural step length typically not accepted.
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Barzilai-Borwein

@ Second Newton approximation:
o Use the Barzilai-Borwein step length in a gradient method.
@ Use the following search direction in findMinScaled.m:
if funEvals > 1
g_diff = g-g_old;

alpha = -alpha*(g_old’*g_diff)/(g_diff’xg_diff);
end
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Barzilai-Borwein

The Barzilai-Borwein method:
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.20056e+03
.18450e+03
.17338e+03
.11907e+03

.08771e+02

O ~N 00 WD DD

3.

.51905e+02
.51675e+02
.43147e+02
.12312e+02
.36640e+02
.14600e+02
.24373e+01
.81654e+01
.82128e+01

52277e-01

Performance is typically improved using the non-monotonic Armijo

condition.
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Non-Linear Conjugate Gradient

@ Third Newton approximation: non-linear conjugate gradient.
@ Use the following search direction in findMinScaled.m:
if funEvals > 1
alpha = min(1,2+%(f_old-f)/(g’*g));
beta = (g’*g)/(g_old’*g_old);
d = g + betaxd;

else
d

g;
end
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Non-Linear Conjugate Gradient

Non-Linear Conjugate Gradient:
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.83619e+03
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.15260e+03
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.08268e+03
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.51905e+02
.21334e+02
.88791e+02
.58569e+02
.47617e+02
.79580e+02
.35990e+02
.37598e+02
.24459e+02

.33766e-01

Note that d is not necessarily a descent direction and typically you
need to implement a check for this. Performance is improved by
preconditioning and /or using a more accurate line-search.
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Quasi-Newton Methods

@ Fourth Newton approximation: quasi-Newton methods.
@ The L-BFGS approximation:

if funEvals > 1

else

end

g_diff = g-g_old;
[S,Y] = lbfgsUpdate(S,Y,-alpha*d,g_diff,memory) ;
HO = -alpha*(d’*g_diff)/(g_diff’*g_diff);

d = lbfgs(g,S,Y,H0);
alpha = 1;

S = zeros(length(w),0);

Y = zeros(length(w),0);
HO = 1;
d =g;

@ Typically, you also need update skipping/damping to preserve
positive-definiteness of the approximation.
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Quasi-Newton Methods

Quasi-Newton Methods:
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Solution found.
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.77168e+02
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Hessian-Free Newton

o Fifth Newton approximation: Hessian-Free Newton.

cgMaxIter = min(maxEvals-funEvals);
cgForce = min(0.5,sqrt (norm(g)))*norm(g) ;
HvFunc = @(v)autoHv(v,w,g,funObj);

[d,cglters,cgRes] = conjGrad(HvFunc,g,cgForce,cgMaxIter);
funEvals = funEvals + cglters;
alpha = 1;
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Quasi-Newton Methods

Quasi-Newton Methods:
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.00000e+00
.00000e+00
.00000e+00
.00000e+00

00000e+00

N WP O O, P, NN

1.

.81156e+03
.06682e+03
.76603e+03
.19297e+03
.70365e+02
.20963e+02
.74937e+02
.61888e+02
.92318e+02

07633e+02

SN NDND 00 = 00 O

9.

.38607e+03
.85128e+02
.21305e+02
.52940e+02
.09050e+01
.69460e+01
.61594e+02
.77862e+01
.26920e+01

65971e-03

Performance is substantially improved by preconditioning (i.e.
diagonal or use L-BFGS).
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Extensions

Extensions:
@ Use another data set.
@ Use another loss function (i.e. smooth SVMs).

@ More accurate linesearch (cubic interpolation, Wolfe
line-search).

Variants of Nesterov's method.

Non-monotonic Armijo condition.

Check that non-linear CG gives a descent direction.
Update skipping/damping in L-BFGS.

Preconditioning in Hessian-free Newton.
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Most of this lecture is based on material from Nocedal and
Wright's very good " Numerical Optimization” book.
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