Practical Session on Convex Optimization: Differentiable Optimization

Mark Schmidt

INRIA/ENS

September 2011

Motviation: Parameter Estimation with Different Models

- We have a binary classification problem.
- We want to try: logistic regression, probit regression, weighted logistic regression, SVMs, neural nets, kernel regression, extreme-value regression, etc.
- We might have a software package with most of these, but what if an important one is missing?

Motviation: Parameter Estimation with Different Models

- We have a binary classification problem.
- We want to try: logistic regression, probit regression, weighted logistic regression, SVMs, neural nets, kernel regression, extreme-value regression, etc.
- We might have a software package with most of these, but what if an important one is missing?
- One option is to use a plug-and-play gradient method.
- Gradient-based methods are for continuous, local optimization where we can evaluate the function and gradient
- This lecture: we will implement simple methods of this type.
- Why? Illustrate basic concepts and fundamental methods that are building blocks for more advanced methods.

Set Up

 If using Matlab, please download the supporting material available here:

http://www.di.ens.fr/~mschmidt/MLSS/

Set Up

 If using Matlab, please download the supporting material available here:

http://www.di.ens.fr/~mschmidt/MLSS/

 You may also download the sido0 data set, or you can generate/load your own data set.

Preparing a Data Set

To load this data in Matlab:

```
>> load('sido0_train.mat');
>> y = load('sido_train.targets');
```

• To generate a random data set:

```
>> X = randn(10000,5000);
>> w = randn(5000,1);
>> y = sign(X*w);
>> flips = rand(10000,1) > .9;
>> y(flips) = -y(flips);
```

ℓ_2 -Regularized Logistic Regression

- We focus on ℓ₂-regularized logistic regression (but the code allows an arbitrary differentiable loss)
- Objective:

$$f(w) = \frac{\lambda}{2}||w||^2 + \sum_{i=1}^n \log(1 + \exp(-y_i(w^T x_i))).$$

• Gradient:

$$f'(w) = \lambda w + \sum_{i=1}^{n} \frac{-y_i}{1 + exp(-y_i(w^T x_i))} x_i.$$

This is implemented in the function regLogistic.m.

Derivative-Checking

• Before doing anything, check your derivative code!

Derivative-Checking

- Before doing anything, check your derivative code!
- We will check the first 25 partial derivatives:

```
>> w = randn(25,1);
>> lambda = 1;
>> [f,g] = regLogistic(w,X(:,1:25),y,lambda);
>> [f,g2] = autoGrad(w,@regLogistic,X(:,1:25),y,lambda);
>> maxDiff = norm(g-g2,'inf')
```

- The function findMin0.m implements a basic gradient method:
 - **1** Evaluate the gradient, g := f'(w).
 - 2 Take the step, $w = w \alpha g$.

```
function [w,f] = findMin(funObj,w,maxEvals,alpha)
[f,g] = funObj(w);
funEvals = 1;
while 1
     w = w - alpha*g;
     [f,g] = funObj(w);
     funEvals = funEvals+1;
     optCond = norm(g,'inf');
     fprintf('\%6d \%15.5e \%15.5e \%15.5e\n',funEvals,alpha,f,optCond);
     if optCond < 1e-2
          break:
     end
     if funEvals >= maxEvals
          break;
     end
end
```

• Running the method:

```
>> [nSamples,nVars] = size(X);
>> w = zeros(nVars,1);
>> lambda = 1;
>> funObj = @(w)regLogistic(w,X,y,lambda);
>> findMinO(funObj,w,250,1);
```

Result with $\alpha = 1$:

```
2
       1.00000e+00
                        2.90492e+09
                                          6.33850e+03
3
       1.00000e+00
                        9.12062e+08
                                          1.26770e+04
4
       1.00000e+00
                        1.17077e+10
                                          1.26770e+04
5
       1.00000e+00
                        9.12062e+08
                                          1.26770e+04
6
       1.00000e+00
                        1.17077e+10
                                          1.26770e+04
       1.00000e+00
                        9.12062e+08
                                          1.26770e+04
8
       1.00000e+00
                        1.17077e+10
                                          1.26770e+04
9
       1.00000e+00
                        9.12062e+08
                                          1.26770e+04
10
                        1 17077e+10
                                          1.26770e+04
       1.00000e+00
```

Step size is too large.

Result with $\alpha = 10^{-2}$:

```
1.00000e-02
                         4.36974e+06
                                          5.10865e+02
  3
        1.00000e-02
                         3.69923e+06
                                          5.05756e+02
  4
        1.00000e-02
                                          5.00699e+02
                         3.04207e+06
  5
        1.00000e-02
                         2.39799e+06
                                          4.95692e+02
  6
        1.00000e-02
                         1.76672e+06
                                          4.90735e+02
        1.00000e-02
                         1.14802e+06
                                          4.85828e+02
        1.00000e-02
  8
                         5.59178e+05
                                          3.74992e+02
  9
        1.00000e-02
                         6.03338e+05
                                          7.88664e+02
 10
        1.00000e-02
                         1.00608e+06
                                          4.84135e+02
250
        1.00000e-02
                         5.90354e+05
                                          4.60089e+02
```

Actual progress with this step size, but not monotonic.

Result with $\alpha = 10^{-5}$:

```
1.00000e-05
                         4.12469e+03
                                          4.48073e+02
  3
        1.00000e-05
                         3.54435e+03
                                          4.44394e+02
  4
        1.00000e-05
                         2.97095e+03
                                          4.36504e+02
  5
        1.00000e-05
                         2.41459e+03
                                          4.18184e+02
  6
        1.00000e-05
                         1.90241e+03
                                          3.75860e+02
        1.00000e-05
                         1.49796e+03
                                          2.93738e+02
        1.00000e-05
  8
                         1.28333e+03
                                          1.63623e+02
  9
        1.00000e-05
                         1.22771e+03
                                          8.97186e+01
 10
        1.00000e-05
                         1.21347e+03
                                          1.14682e+02
250
        1.00000e-05
                         8.34321e+02
                                          2.28737e+01
```

This step size yields the best progress.

Result with $\alpha = 10^{-7}$:

```
1.00000e-07
                         8.30078e+03
                                          5.61680e+03
  3
                                          5.36067e+03
        1.00000e-07
                         7.85817e+03
  4
        1.00000e-07
                         7.45565e+03
                                          5.11815e+03
  5
        1.00000e-07
                        7.08930e+03
                                         4.88905e+03
  6
        1.00000e-07
                         6.75553e+03
                                         4.67301e+03
        1.00000e-07
                         6.45106e+03
                                         4.46955e+03
  8
        1.00000e-07
                         6.17292e+03
                                         4.27812e+03
  9
        1.00000e-07
                         5.91844e+03
                                         4.09810e+03
 10
        1.00000e-07
                         5.68525e+03
                                         3.92885e+03
250
        1.00000e-07
                         1.72792e+03
                                         3.97410e+02
```

This step size seems too small to make significant proress.

- We don't want to tune the step size for every new problem.
- This is why we use a line search.

- We don't want to tune the step size for every new problem.
- This is why we use a line search.
- A basic backtracking search:
 - **1** Start with a large value of α .
 - ② Divided α in half if we don't satisfy the Armijo condition:

$$f(w - \alpha g) \le f(w) - \gamma \alpha ||g||^2$$
.

Basic backtracking line search:

```
wp = w - alpha*g;
[fp,gp] = funObj(wp);
funEvals = funEvals+1;
while fp > f - gamma*alpha*g'*g
    alpha = alpha/2;
    wp = w - alpha*g;
    [fp,gp] = funObj(wp);
    funEvals = funEvals+1;
end
w = wp;
f = fp;
g = gp;
```

Result with $\alpha_0=1$ and $\gamma=10^{-4}$:

```
18
                         6.28797e+03
                                          4.52010e+02
        1.52588e-05
 19
        1.52588e-05
                         5.39309e+03
                                          4.51876e+02
20
                         4.49865e+03
                                          4.51459e+02
        1.52588e-05
 21
        1.52588e-05
                         3.60605e+03
                                          4.49767e+02
 22
        1.52588e-05
                         2.72306e+03
                                          4.41135e+02
23
        1.52588e-05
                         1.89570e+03
                                          3.93456e+02
24
        1.52588e-05
                         1.32969e+03
                                          2.14599e+02
25
        1.52588e-05
                         1.22179e+03
                                          8.68655e+01
26
        1.52588e-05
                         1.20389e+03
                                          8.76510e+01
250
        1.52588e-05
                         7.79165e+02
                                          1.98571e+01
```

In this case, backtracking gives better performance than fixed α .

- A danger with the simple backtracking is that α_k may become too small to make substantial progress.
- We can reset α_k on each iteration:

```
if funEvals > 1
    alpha = 1;
end
```

Result with resetting to $\alpha = 1$:

```
18
        1.52588e-05
                         6.28797e+03
                                          4.52010e+02
32
        1 22070e-04
                         3.15106e+03
                                          1.08930e+03
49
        1.52588e-05
                                          2.74485e+02
                         1.38857e+03
65
        3.05176e-05
                         1.36762e+03
                                          3.92855e+02
82
        1.52588e-05
                         1.19098e+03
                                          1.63615e+02
99
        1.52588e-05
                         1.14223e+03
                                          7.11060e+01
113
        1.22070e-04
                         1.10533e+03
                                          1.46868e+02
130
        1.52588e-05
                         1.06385e+03
                                          5.81590e+01
144
        1.22070e-04
                         1.04816e+03
                                          1.20607e+02
254
        1.52588e-05
                         9.57028e+02
                                          3.52162e+01
```

Each iteration makes more progress, but requires more evaluations.

- Step size halving ignores information collected during the line-search.
- We can reduce the number of evaluations per iteration using Hermite polynomial interpolation.
- E.g., we can minimize the quadratic passing through f(w), f'(w), and $f(w \alpha g)$:

- Step size halving ignores information collected during the line-search.
- We can reduce the number of evaluations per iteration using Hermite polynomial interpolation.
- E.g., we can minimize the quadratic passing through f(w), f'(w), and $f(w \alpha g)$:

```
alpha = alpha^2*g'*g'(2*(fp + g'*g*alpha - f));
```

Result with resetting to $\alpha = 1$ quadratic interpolation:

```
16
        1.22706e-05
                         5.05711e+03
                                         4.51353e+02
 20
        3.45637e-05
                         3.03913e+03
                                         4.43463e+02
24
                         1.37769e+03
                                         2.43325e+02
        3.24136e-05
 28
        1.08171e-05
                         1.22260e+03
                                         1.33995e+02
32
        1.47454e-05
                         1.19365e+03
                                         1.08309e+02
38
        1.01415e-04
                         1.14996e+03
                                         1.52492e+02
45
        5.18193e-05
                         1.09565e+03
                                         1.36125e+02
51
        1.65099e-05
                         1.08090e+03
                                         7.84479e+01
 54
        3.26453e-05
                         1.07401e+03
                                         1.14560e+02
                                         2.33304e+01
251
        1.23991e-05
                         7.87318e+02
```

Significantly reduces the number of evaluations per iteration.

• Setting $\alpha_k = 1$ is typically too large.

- Setting $\alpha_k = 1$ is typically too large.
- On the first iteration, we can use some heuristic like:
 alpha = 1/||g||

- Setting $\alpha_k = 1$ is typically too large.
- On the first iteration, we can use some heuristic like:
 alpha = 1/||g||
- ullet On subsequent iterations, we can initialize $lpha_k$ with polynomial interpolation:

```
alpha = min(1,2*(f_old-f)/(g'*g));
```

Result with quadratic initialization and quadratic interpolation:

2	1.41623e-05	5.83619e+03	4.51905e+02
3	1.00669e-04	1.65409e+03	5.95919e+02
6	1.22437e-05	1.22162e+03	1.58192e+02
8	1.33724e-05	1.18060e+03	7.74888e+01
9	8.93858e-05	1.11182e+03	8.70173e+01
11	2.88742e-05	1.09897e+03	9.47907e+01
12	2.54553e-05	1.08877e+03	9.32675e+01
13	1.88667e-05	1.07807e+03	7.66592e+01
14	3.75443e-05	1.06820e+03	9.11023e+01
250	9.74511e-06	6.20440e+02	2.09519e+01

There is now very little backtracking.

Practical implementations take these ideas further:

- Interpolation based on cubic or higher-order interpolation.
- Line-search based on Wolfe conditions.

- One way to enhance the performance of gradient methods is with Nesterov's exploration step between gradient updates.
- Also known as accelerated or optimal gradient methods.
- Extrapolation set to achieve an optimal convergence rate for convex optimization.

- One way to enhance the performance of gradient methods is with Nesterov's exploration step between gradient updates.
- Also known as accelerated or optimal gradient methods.
- Extrapolation set to achieve an optimal convergence rate for convex optimization.
- Based on the simple recursion:

$$w_{k+1} = y_k - \alpha f'(y_k),$$

$$t_{k+1} = \frac{1 + \sqrt{1 + 4t_k^2}}{2}$$

$$y_{k+1} = w_k + \frac{t_k - 1}{t_{k+1}}(w_{k+1} - w_k).$$

```
t = 1;
v = w;
while 1
    if funEvals > 1
         tp = (1 + sqrt(1+4*t^2))/2;
         y = w + ((t-1)/tp)*(w-w_old);
         t = tp;
         [f,g] = funObj(y);
         funEvals = funEvals+1;
    end
    w old = w:
    wp = y - alpha*g;
    [fp,gp] = funObj(wp);
    funEvals = funEvals+1;
    while fp > f - gamma*alpha*g'*g
         alpha = alpha^2*g'*g/(2*(fp + g'*g*alpha - f));
         wp = y - alpha*g;
         [fp,gp] = funObj(wp);
         funEvals = funEvals+1;
    end
    w = wp;
```

Result with Nesterov's extrapolation scheme:

```
2
        1.41623e-05
                         8.78772e+03
                                          5.88650e+03
  4
        1.41623e-05
                         5.83619e+03
                                          4.51905e+02
  6
        1.41623e-05
                         4.77196e+03
                                          4.51507e+02
        1.41623e-05
                         3.48256e+03
                                          4.48841e+02
 10
        1.41623e-05
                         2.01470e+03
                                          4.06706e+02
 12
        1.41623e-05
                         1.28744e+03
                                          2.67356e+02
 14
        1.41623e-05
                         1.19696e+03
                                          1.66685e+02
 16
        1.41623e-05
                         1.14429e+03
                                          7.45916e+01
 18
        1.41623e-05
                         1.11691e+03
                                          8.06874e+01
250
        1.41623e-05
                         3.20896e+02
                                          5.60646e+00
```

Final function value is nearly cut in half, despite two evaluations per iteration (various tricks can make this work better).

Newton's Method

 The other classical differentiable optimization method is Newton's method.

Newton's Method

- The other classical differentiable optimization method is Newton's method.
- Uses the update

$$w_{k+1} = w_k - \alpha_k d_k$$

where d_k is a solution to the system

$$f''(w_k)d_k=-f'(w_k).$$

- The other classical differentiable optimization method is Newton's method.
- Uses the update

$$w_{k+1} = w_k - \alpha_k d_k,$$

where d_k is a solution to the system

$$f''(w_k)d_k = -f'(w_k).$$

• We modify the Armijo condition to

$$f(w_{k+1}) \leq f(w_k) + \gamma \alpha_k f'(w_k)^T d_k.$$

• Has a natural step length of $\alpha_k = 1$.

- The other classical differentiable optimization method is Newton's method.
- Uses the update

$$w_{k+1} = w_k - \alpha_k d_k,$$

where d_k is a solution to the system

$$f''(w_k)d_k=-f'(w_k).$$

• We modify the Armijo condition to

$$f(w_{k+1}) \leq f(w_k) + \gamma \alpha_k f'(w_k)^T d_k.$$

- Has a natural step length of $\alpha_k = 1$.
- Simple implementation in findMinNewton.m (do not run this).

Running findMinNewton.m:

```
1.00000e+00
                        1.91912e+03
                                          1.40881e+03
3
       1.00000e+00
                        7.96491e+02
                                          5.06968e+02
4
       1.00000e+00
                        3.85229e+02
                                          1.92354e+02
5
       1.00000e+00
                        2.20943e+02
                                          7.45484e+01
6
       1.00000e+00
                        1.51860e+02
                                          2.96743e+01
       1.00000e+00
                        1.22474e+02
                                          1.20043e+01
8
       1.00000e+00
                        1.11158e+02
                                         4.60128e+00
9
                                          1.38955e+00
       1.00000e+00
                        1.08039e+02
10
                                          2.17531e-01
       1.00000e+00
                        1.07643e+02
```

Our previous methods are still far from the solution.

- Newton's method often converges very fast, but with very expensive iterations.
- Typically, you need to modify the Hessian to be positive-definite.

- Newton's method often converges very fast, but with very expensive iterations.
- Typically, you need to modify the Hessian to be positive-definite.
- Is it possible to get fast convergence like Newton's method, without the cost?

Diagonally-Scaled Steepest Descent

- First Newton approximation: use the diagonal of $f''(w_k)$.
- Use regLogisticDiag.m and in findMinNewton.m use:

$$d = g./H;$$

Diagonally-Scaled Steepest Descent

Diagonally-Scaled Steepest Descent:

```
8
        1.02548e-02
                         5.08497e+03
                                           4.46796e+02
 12
        8.41245e-05
                         2.40090e+03
                                           3.93547e+02
 16
        3.20810e-04
                          1 44074e + 03
                                           2 28581e+02
 19
        8.09445e-04
                                           1.11657e+02
                         1.24985e+03
 22
        2.36797e-03
                                           1.79855e+02
                         1.17424e+03
 26
        9.45584e-03
                          1.14728e+03
                                           1.83633e+02
 29
        7.95545e-04
                         1.05724e+03
                                           9.75465e+01
32
        1.79066e-03
                         1.02717e+03
                                           8.32227e+01
                         9.74572e+02
36
        1.97395e-02
                                           1.40304e+02
251
        2.35414e-03
                         1.45367e+02
                                           1.28719e+01
```

Substantially more progress than gradient methods, but more expensive iterations and natural step length typically not accepted.

Barzilai-Borwein

- Second Newton approximation:
 - Use the Barzilai-Borwein step length in a gradient method.
- Use the following search direction in findMinScaled.m:

```
if funEvals > 1
    g_diff = g-g_old;
    alpha = -alpha*(g_old'*g_diff)/(g_diff'*g_diff);
end
```

Barzilai-Borwein

251

The Barzilai-Borwein method:

```
2
       1.41623e-05
                        5.83619e+03
                                          4.51905e+02
 3
                                          4.51675e+02
       1.30265e-05
                         5.07243e+03
 6
       3.77621e-05
                        2.86695e+03
                                          4.43147e+02
 9
       2 57551e-05
                                          3 12312e+02
                         1 51890e + 03
11
       1.39417e-05
                         1.23060e+03
                                          1.36640e+02
12
       1.89086e-05
                         1.20056e+03
                                          1.14600e+02
13
       1.21666e-05
                         1.18450e+03
                                          8.24373e+01
14
       1.18475e-05
                         1.17338e+03
                                          7.81654e+01
15
       6.85312e-05
                         1.11907e+03
                                          6.82128e+01
```

1.08771e+02

3.52277e-01

Performance is typically improved using the non-monotonic Armijo condition.

3.16440e-04

Non-Linear Conjugate Gradient

- Third Newton approximation: non-linear conjugate gradient.
- Use the following search direction in findMinScaled.m:

```
if funEvals > 1
    alpha = min(1,2*(f_old-f)/(g'*g));
    beta = (g'*g)/(g_old'*g_old);
    d = g + beta*d;
else
    d = g;
end
```

Non-Linear Conjugate Gradient

Non-Linear Conjugate Gradient:

```
2
        1.41623e-05
                         5.83619e+03
                                          4.51905e+02
  3
        1.00669e-04
                         1.28081e+03
                                          2.21334e+02
  6
        4.03711e-05
                         1.24034e+03
                                          1.88791e+02
        8.70114e-06
                         1.19428e+03
                                          1.58569e+02
  8
        1.70587e-05
                         1.15260e+03
                                          1.47617e+02
        1.96374e-05
                         1.13544e+03
                                          1.79580e+02
 10
        4.62645e-06
                         1.10123e+03
                                          1.35990e+02
 11
        1.88296e-05
                         1.08414e+03
                                          1.37598e+02
 13
       -4.61296e-06
                                          1.24459e+02
                         1.08268e+03
251
        1.56501e-04
                         1.08880e+02
                                          4.33766e-01
```

Note that d is not necessarily a descent direction and typically you need to implement a check for this. Performance is improved by preconditioning and/or using a more accurate line-search.

Quasi-Newton Methods

- Fourth Newton approximation: quasi-Newton methods.
- The L-BFGS approximation:

 Typically, you also need update skipping/damping to preserve positive-definiteness of the approximation.

Quasi-Newton Methods

Quasi-Newton Methods:

```
2
       1.41623e-05
                         5.83619e+03
                                          4.51905e+02
 3
       1.00000e+00
                         5.11759e+03
                                          4.51692e+02
 6
       1.52249e-03
                         1.45874e+03
                                          4.45557e+02
 8
       3.46536e-01
                         1.24791e+03
                                          1.77168e+02
 9
                                          9.55587e+01
       1.00000e+00
                         1.20050e+03
11
       3.13685e-01
                         1.18137e+03
                                          9.50644e+01
12
       1.00000e+00
                         1.14498e+03
                                          7.55459e+01
13
       1.00000e+00
                         1.07778e+03
                                          1.48323e+02
76
       1.00000e+00
                         1.07632e+02
                                          4.80271e-03
```

Solution found.

Hessian-Free Newton

• Fifth Newton approximation: Hessian-Free Newton.

```
cgMaxIter = min(maxEvals-funEvals);
cgForce = min(0.5,sqrt(norm(g)))*norm(g);
HvFunc = @(v)autoHv(v,w,g,funObj);
[d,cgIters,cgRes] = conjGrad(HvFunc,g,cgForce,cgMaxIter);
funEvals = funEvals + cgIters;
alpha = 1;
```

Quasi-Newton Methods

Quasi-Newton Methods:

```
3
        1.00000e+00
                         2.81156e+03
                                           1.38607e+03
  5
        1.00000e+00
                         2.06682e+03
                                           5.85128e+02
 8
        1.00000e+00
                         1.76603e+03
                                           8.21305e+02
 10
        1.00000e+00
                         1.19297e+03
                                           1.52940e+02
14
        1.00000e+00
                         9.70365e+02
                                           8.09050e+01
17
        1.00000e+00
                         9.20963e+02
                                           2.69460e+01
30
        1.00000e+00
                         4.74937e+02
                                           2.61594e+02
32
        1.00000e+00
                         3.61888e+02
                                           7.77862e+01
35
        1.00000e+00
                         2.92318e+02
                                           4.26920e+01
                                           9.65971e-03
141
        1.00000e+00
                         1.07633e+02
```

Performance is substantially improved by preconditioning (i.e. diagonal or use L-BFGS).

Extensions

Extensions:

- Use another data set.
- Use another loss function (i.e. smooth SVMs).
- More accurate linesearch (cubic interpolation, Wolfe line-search).
- Variants of Nesterov's method.
- Non-monotonic Armijo condition.
- Check that non-linear CG gives a descent direction.
- Update skipping/damping in L-BFGS.
- Preconditioning in Hessian-free Newton.

References

Most of this lecture is based on material from Nocedal and Wright's very good "Numerical Optimization" book.