Practical Session on Convex Optimization:

Differentiable Optimization

Mark Schmidt

INRIA/ENS

September 2011

Mark Schmidt MLSS 2011 Differentiable Optimization

Motviation: Parameter Estimation with Different Models

@ We have a binary classification problem.

@ We want to try: logistic regression, probit regression,
weighted logistic regression, SVMs, neural nets, kernel
regression, extreme-value regression, etc.

o We might have a software package with most of these, but
what if an important one is missing?

Mark Schmidt MLSS 2011 Differentiable Optimization

Motviation: Parameter Estimation with Different Models

We have a binary classification problem.

@ We want to try: logistic regression, probit regression,
weighted logistic regression, SVMs, neural nets, kernel
regression, extreme-value regression, etc.

o We might have a software package with most of these, but
what if an important one is missing?

@ One option is to use a plug-and-play gradient method.

@ Gradient-based methods are for continuous, local optimization
where we can evaluate the function and gradient

@ This lecture: we will implement simple methods of this type.

@ Why? lllustrate basic concepts and fundamental methods that
are building blocks for more advanced methods.

Mark Schmidt MLSS 2011 Differentiable Optimization

@ If using Matlab, please download the supporting material
available here:
http://www.di.ens.fr/~mschmidt/MLSS/

Mark Schmidt MLSS 2011 Differentiable Optimization

http://www.di.ens.fr/~mschmidt/MLSS/

@ If using Matlab, please download the supporting material

available here:
http://www.di.ens.fr/~mschmidt/MLSS/

@ You may also download the sidoO data set, or you can
generate/load your own data set.

Mark Schmidt MLSS 2011 Differentiable Optimization

http://www.di.ens.fr/~mschmidt/MLSS/

Preparing a Data Set

To load this data in Matlab:

>> load(’sidoO_train.mat’);
>> y = load(’sido_train.targets’);

To generate a random data set:

>> X = randn(10000,5000) ;

>> w = randn(5000,1);

>> y = sign(Xxw);

>> flips = rand(10000,1) > .9;
>> y(flips) = -y(flips);

Mark Schmidt

MLSS 2011 Differentiable Optimization

¢>-Regularized Logistic Regression

@ We focus on /»-regularized logistic regression
(but the code allows an arbitrary differentiable loss)

@ Objective:
)\ n
f(w) = EHWH2 +) log(1+ exp(—yi(w xi))).
i=1
@ Gradient:

f! =Aw + i i
(W) =AW+)™

This is implemented in the function reglogistic.m.

Mark Schmidt MLSS 2011 Differentiable Optimization

Derivative-Checking

@ Before doing anything, check your derivative code!

Mark Schmidt MLSS 2011 Differentiable Optimization

Derivative-Checking

@ Before doing anything, check your derivative code!

@ We will check the first 25 partial derivatives:
>> w = randn(25,1);
>> lambda = 1;
>> [f,g]l = reglogistic(w,X(:,1:25),y,lambda);
>> [f,g2] = autoGrad(w,@reglogistic,X(:,1:25),y,lambda);
>> maxDiff = norm(g-g2,’inf’)

Mark Schmidt MLSS 2011 Differentiable Optimization

A Basic Gradient Method

@ The function findMin0.m implements a basic gradient
method:
@ Evaluate the gradient, g := f'(w).
@ Take the step, w = w — ag.

Mark Schmidt MLSS 2011 Differentiable Optimization

A Basic Gradient Method

function [w,f] = findMin(funObj,w,maxEvals,alpha)

[f,g] = funObj(w);
funEvals = 1;

while 1
W = W - alphax*g;
[f,g] = funObj(w);
funEvals = funEvals+1;

optCond = norm(g,’inf’);
fprintf (\%6d \%15.5e \%15.5e \%15.5e\n’,funEvals,alpha,f,optCond) ;

if optCond < le-2
break;
end

if funEvals >= maxEvals
break;
end
end

Mark Schmidt MLSS 2011 Differentiable Optimization

A Basic Gradient Method

@ Running the method:

>> [nSamples,nVars] = size(X);

>> w = zeros(nVars,1);

>> lambda = 1;

>> funObj = @(w)reglogistic(w,X,y,lambda);
>> findMinO (funObj,w,250,1);

Mark Schmidt MLSS 2011 Differentiable Optimization

A Basic Gradient Method

Result with o« = 1:

© 00 NO O WN

[y
o

N e = T e e = R e =Y

.00000e+00
.00000e+00
.00000e+00
.00000e+00
.00000e+00
.00000e+00
.00000e+00
.00000e+00
.00000e+00

Step size is too large.

Mark Schmidt

MLSS 2011

O, O, O, O©N

.90492e+09
.12062e+08
.17077e+10
.12062e+08
.17077e+10
.12062e+08
.17077e+10
.12062e+08
.17077e+10

Differentiable Optimization

[N T)

.33850e+03
.26770e+04
.26770e+04
.26770e+04
.26770e+04
.26770e+04
.26770e+04
.26770e+04
.26770e+04

A Basic Gradient Method

Result with o = 102:

© 00 N O O W N

(I
o

250

N e e

1.

.00000e-02
.00000e-02
.00000e-02
.00000e-02
.00000e-02
.00000e-02
.00000e-02
.00000e-02
.00000e-02

00000e-02

= OO, PN W WD

5.

.36974e+06
.69923e+06
.04207e+06
.39799e+06
.76672e+06
.14802e+06
.59178e+05
.03338e+05
.00608e+06

90354e+05

BN WA DD oo o

4.

Actual progress with this step size, but not monotonic.

Mark Schmidt

MLSS 2011

Differentiable Optimization

.10865e+02
.05756e+02
.00699e+02
.95692e+02
.90735e+02
.85828e+02
.74992e+02
.88664e+02
.84135e+02

60089e+02

A Basic Gradient Method

Result with o = 107°:

© 00 N O O W N

(I
o

250

N e e

1.

.00000e-05
.00000e-05
.00000e-05
.00000e-05
.00000e-05
.00000e-05
.00000e-05
.00000e-05
.00000e-05

00000e-05

=R R R R, NN WD

8.

.12469e+03
.54435e+03
.97095e+03
.41459e+03
.90241e+03
.49796e+03
.28333e+03
.22771e+03
.21347e+03

34321e+02

This step size yields the best progress.

Mark Schmidt

MLSS 2011

Differentiable Optimization

= 00 P, N WD DD D

.48073e+02
.44394e+02
.36504e+02
.18184e+02
.75860e+02
.93738e+02
.63623e+02
.97186e+01
.14682e+02

.28737e+01

A Basic Gradient Method

Result with o = 107 7:

© 00 N O O W N

(I
o

250

N e e

1.

.00000e-07
.00000e-07
.00000e-07
.00000e-07
.00000e-07
.00000e-07
.00000e-07
.00000e-07
.00000e-07

00000e-07

g oo 000N NN

1.

.30078e+03
.85817e+03
.45565e+03
.08930e+03
.75553e+03
.45106e+03
.17292e+03
.91844e+03
.68525e+03

72792e+03

WD D ool o

3.

.61680e+03
.36067e+03
.11815e+03
.88905e+03
.67301e+03
.46955e+03
.27812e+03
.09810e+03
.92885e+03

97410e+02

This step size seems too small to make significant proress.

Mark Schmidt

MLSS 2011

Differentiable Optimization

Armijo Backtracking Line-Search

@ We don’t want to tune the step size for every new problem.

@ This is why we use a line search.

Mark Schmidt MLSS 2011 Differentiable Optimization

Armijo Backtracking Line-Search

@ We don’t want to tune the step size for every new problem.

@ This is why we use a line search.
@ A basic backtracking search:

© Start with a large value of a.
@ Divided « in half if we don't satisfy the Armijo condition:

f(w—ag) < f(w) —yallgl.

Mark Schmidt MLSS 2011 Differentiable Optimization

Armijo Backtracking Line-Search

Basic backtracking line search:

wp = w - alphaxg;
[fp,gp] = funObj(wp);
funEvals = funEvals+1;

while fp > f - gamma*alpha*g’*g
alpha = alpha/2;
wp = w - alphaxg;
[fp,gp] = funObj(wp);
funEvals = funEvals+1;

end

W = Wp;
f = fp;
g = Ep;

Mark Schmidt MLSS 2011 Differentiable Optimization

Armijo Backtracking Line-Search

Result with ap = 1 and v = 10~*:

250

18
19
20
21
22
23
24
25
26

N e

1.

.52588e-05
.52588e-05
.52588e-05
.52588e-05
.52588e-05
.52588e-05
.52588e-05
.52588e-05
.52588e-05

52588e-05

=R R, NW R oo

7.

.28797e+03
.39309e+03
.49865e+03
.60605e+03
.72306e+03
.89570e+03
.32969e+03
.22179e+03
.20389e+03

79165e+02

© 00N WA DDA

1.

.52010e+02
.51876e+02
.51459e+02
.49767e+02
.41135e+02
.93456e+02
.14599e+02
.68655e+01
.76510e+01

98571e+01

In this case, backtracking gives better performance than fixed a.

Mark Schmidt

MLSS 2011

Differentiable Optimization

Armijo Backtracking Line-Search

@ A danger with the simple backtracking is that ay may become
too small to make substantial progress.

@ We can reset oy, on each iteration:

if funEvals > 1
alpha = 1;
end

Mark Schmidt MLSS 2011 Differentiable Optimization

Armijo Backtracking Line-Search

Result with resetting to oo = 1:

18
32
49
65
82
99
113
130
144

254

e R

1.

.52588e-05
.22070e-04
.52588e-05
.05176e-05
.52588e-05
.52588e-05
.22070e-04
.52588e-05
.22070e-04

52588e-05

el i)]

9.

.28797e+03
.15106e+03
.38857e+03
.36762e+03
.19098e+03
.14223e+03
.10633e+03
.06385e+03
.04816e+03

57028e+02

= O R NR WD

3.

.52010e+02
.08930e+03
.74485e+02
.92855e+02
.63615e+02
.11060e+01
.46868e+02
.81590e+01
.20607e+02

52162e+01

Each iteration makes more progress, but requires more evaluations.

Mark Schmidt

MLSS 2011

Differentiable Optimization

Hermite Polynomial Interpolation

@ Step size halving ignores information collected during the
line-search.

@ We can reduce the number of evaluations per iteration using
Hermite polynomial interpolation.

e E.g., we can minimize the quadratic passing through f(w),
f'(w), and f(w — ag):

Mark Schmidt MLSS 2011 Differentiable Optimization

Hermite Polynomial Interpolation

@ Step size halving ignores information collected during the
line-search.

@ We can reduce the number of evaluations per iteration using
Hermite polynomial interpolation.

e E.g., we can minimize the quadratic passing through f(w),
f'(w), and f(w — ag):
alpha = alpha~2x*g’*g/(2x(fp + g’*g+*alpha - f));

Mark Schmidt MLSS 2011 Differentiable Optimization

Hermite Polynomial Interpolation

Result with resetting to o = 1 quadratic interpolation:

251

16
20
24
28
32
38
45
51
54

W HFE O R PR Wwwe

1.

.22706e-05
.45637e-05
.24136e-05
.08171e-05
.47454e-05
.01415e-04
.18193e-05
.65099e-05
.26453e-05

23991e-05

i e

7.

.06711e+03
.03913e+03
.37769e+03
.22260e+03
.19365e+03
.14996e+03
.09565e+03
.08090e+03
.07401e+03

87318e+02

R NP R RN DD

2.

.51353e+02
.43463e+02
.43325e+02
.33995e+02
.08309e+02
.52492e+02
.36125e+02
.84479e+01
.14560e+02

33304e+01

Significantly reduces the number of evaluations per iteration.

Mark Schmidt

MLSS 2011

Differentiable Optimization

Hermite Polynomial Interpolation

@ Setting o, = 1 is typically too large.

Mark Schmidt MLSS 2011 Differentiable Optimization

Hermite Polynomial Interpolation

@ Setting o, = 1 is typically too large.
@ On the first iteration, we can use some heuristic like:
alpha = 1/|Igl|

Mark Schmidt MLSS 2011 Differentiable Optimization

Hermite Polynomial Interpolation

@ Setting o, = 1 is typically too large.
@ On the first iteration, we can use some heuristic like:
alpha = 1/|Igl|

@ On subsequent iterations, we can initialize ay with polynomial
interpolation:

alpha = min(1,2*(f_old-f)/(g’*g));

Mark Schmidt MLSS 2011 Differentiable Optimization

Hermite Polynomial Interpolation

Result with quadratic initialization and quadratic interpolation:

250

© 00 O WN

11
12
13
14

W HE NN R B =

9.

.41623e-05
.00669e-04
.22437e-05
.33724e-05
.938568e-05
.88742e-05
.54553e-05
.88667e-05
.75443e-05

74511e-06

e e s

6.

.83619e+03
.65409e+03
.22162e+03
.18060e+03
.11182e+03
.09897e+03
.08877e+03
.07807e+03
.06820e+03

20440e+02

There is now very little backtracking.

Mark Schmidt

MLSS 2011

Differentiable Optimization

S

© N © © 0N+~ O,

.51905e+02
.95919e+02
.58192e+02
.74888e+01
.70173e+01
.47907e+01
.32675e+01
.66592e+01
.11023e+01

.09519e+01

Hermite Polynomial Interpolation

Practical implementations take these ideas further:
@ Interpolation based on cubic or higher-order interpolation.

@ Line-search based on Wolfe conditions.

Mark Schmidt MLSS 2011 Differentiable Optimization

Nesterov Extrapolation

@ One way to enhance the performance of gradient methods is
with Nesterov's exploration step between gradient updates.

@ Also known as accelerated or optimal gradient methods.

@ Extrapolation set to achieve an optimal convergence rate for
convex optimization.

Mark Schmidt MLSS 2011 Differentiable Optimization

Nesterov Extrapolation

@ One way to enhance the performance of gradient methods is
with Nesterov's exploration step between gradient updates.

@ Also known as accelerated or optimal gradient methods.

@ Extrapolation set to achieve an optimal convergence rate for
convex optimization.

@ Based on the simple recursion:

Wkt+1 = yk — af'(yk),

14 /1+4¢2

t =
k41 5
te — 1
Vi1 = Wk + (Wi1 — wk).
ti+1

Mark Schmidt MLSS 2011 Differentiable Optimization

Nesterov Extrapolation

t =1;
y =w;
while 1

if funEvals > 1
tp = (1 + sqrt(1+4%t~2))/2;
y = w + ((t-1)/tp)*(w-w_old);
t = tp;
[£,g] = funObj(y);
funEvals = funEvals+1;

end

w_old = w;

wp = y - alphax*g;
[fp,gp] = funObj(wp);
funEvals = funEvals+1;

while fp > f - gamma*alpha*g’*g
alpha = alpha”2*g’*g/(2x(fp + g’*g*alpha - f));
wp = y - alphaxg;
[fp,gp] = funObj(wp);
funEvals = funEvals+1;
end

W = up;

Mark Schmidt MLSS 2011 Differentiable Optimi:

Nesterov Extrapolation

Result with Nesterov's extrapolation scheme:

QO O PN

10
12
14
16
18

250

I R = T = T ==Y

1.

.41623e-05
.41623e-05
.41623e-05
.41623e-05
.41623e-05
.41623e-05
.41623e-05
.41623e-05
.41623e-05

41623e-05

P P, R, R, NWS oo

3.

.78772e+03
.83619e+03
.77196e+03
.48256e+03
.01470e+03
.28744e+03
.19696e+03
.14429e+03
.11691e+03

20896e+02

0 ~N F~ NN o

5.

.88650e+03
.51905e+02
.51507e+02
.48841e+02
.06706e+02
.67356e+02
.6668b5e+02
.45916e+01
.06874e+01

60646e+00

Final function value is nearly cut in half, despite two evaluations

per iteration (various tricks can make this work better).

Mark Schmidt

MLSS 2011

Differentiable Optimization

Newton's Method

@ The other classical differentiable optimization method is
Newton's method.

Mark Schmidt MLSS 2011 Differentiable Optimization

Newton's Method

@ The other classical differentiable optimization method is
Newton's method.

@ Uses the update
Wk+1 = Wk — adg,

where dj is a solution to the system

" (wi)dx = —F'(wg).

Mark Schmidt MLSS 2011

Differentiable Optimization

Newton's Method

@ The other classical differentiable optimization method is
Newton's method.

@ Uses the update
Wk+1 = Wk — adg,

where dj is a solution to the system
" (wi)dx = —F'(wg).
o We modify the Armijo condition to
F(wirn) < F(wi) + yauf (wi) T di.

@ Has a natural step length of ay = 1.

Mark Schmidt MLSS 2011 Differentiable Optimization

Newton's Method

@ The other classical differentiable optimization method is
Newton's method.

Uses the update
Wk+1 = Wk — adg,

where dj is a solution to the system

" (wi)dx = —F'(wg).

We modify the Armijo condition to

f(Wk+1) < f(Wk) + ’)/Ckkf/(Wk)Tdk.

Has a natural step length of oy = 1.

Simple implementation in findMinNewton.m (do not run this).

Mark Schmidt MLSS 2011 Differentiable Optimization

Newton's Method

Running findMinNewton.m:

Our previous methods are still far from the solution.

Mark Schmidt

©O© 00 NO O WN

-
o

e = T e e = R e =Y

.00000e+00
.00000e+00
.00000e+00
.00000e+00
.00000e+00
.00000e+00
.00000e+00
.00000e+00
.00000e+00

MLSS 2011

[S e e SIS N I

.91912e+03
.96491e+02
.85229e+02
.20943e+02
.51860e+02
.22474e+02
.11158e+02
.08039e+02
.07643e+02

Differentiable Optimization

N~ PP, NN O

.40881e+03
.06968e+02
.92354e+02
.45484e+01
.96743e+01
.20043e+01
.60128e+00
.38955e+00
.17531e-01

Newton's Method

@ Newton's method often converges very fast, but with very
expensive iterations.

@ Typically, you need to modify the Hessian to be
positive-definite.

Mark Schmidt MLSS 2011 Differentiable Optimization

Newton's Method

@ Newton's method often converges very fast, but with very
expensive iterations.

@ Typically, you need to modify the Hessian to be
positive-definite.

@ Is it possible to get fast convergence like Newton's method,
without the cost?

Mark Schmidt MLSS 2011 Differentiable Optimization

Diagonally-Scaled Steepest Descent

e First Newton approximation: use the diagonal of f”(wy).
@ Use reglogisticDiag.m and in findMinNewton.m use:
d = g./H;

Mark Schmidt MLSS 2011 Differentiable Optimization

Diagonally-Scaled Steepest Descent

Diagonally-Scaled Steepest Descent:

251

8
12
16
19
22
26
29
32
36

B = N O N 00 W o

2.

.02548e-02
.41245e-05
.20810e-04
.09445e-04
.36797e-03
.45584e-03
.955645e-04
.79066e-03
.97395e-02

35414e-03

O R B R PR NDOo

1.

.08497e+03
.40090e+03
.44074e+03
.24986e+03
.17424e+03
.14728e+03
.05724e+03
.02717e+03
.74572e+02

45367e+02

— 00 O R, P P N Wb

1.

.46796e+02
.935647e+02
.28681e+02
.11657e+02
.79855e+02
.83633e+02
.75465e+01
.32227e+01
.40304e+02

28719e+01

Substantially more progress than gradient methods, but more
expensive iterations and natural step length typically not accepted.

Mark Schmidt

MLSS 2011

Differentiable Optimization

Barzilai-Borwein

@ Second Newton approximation:
o Use the Barzilai-Borwein step length in a gradient method.
@ Use the following search direction in findMinScaled.m:
if funEvals > 1
g_diff = g-g_old;

alpha = -alpha*(g_old’*g_diff)/(g_diff’xg_diff);
end

Mark Schmidt MLSS 2011 Differentiable Optimization

Barzilai-Borwein

The Barzilai-Borwein method:

© O W N

11
12
13
14
15

251

O H R, B BN W e

3.

.41623e-05
.30265e-05
.77621e-05
.57551e-05
.39417e-05
.89086e-05
.21666e-05
.18475e-05
.85312e-05

16440e-04

Ll e o o O I) B¢ |

1

.83619e+03
.07243e+03
.86695e+03
.51890e+03
.23060e+03
.20056e+03
.18450e+03
.17338e+03
.11907e+03

.08771e+02

O ~N 00 WD DD

3.

.51905e+02
.51675e+02
.43147e+02
.12312e+02
.36640e+02
.14600e+02
.24373e+01
.81654e+01
.82128e+01

52277e-01

Performance is typically improved using the non-monotonic Armijo

condition.

Mark Schmidt

MLSS 2011

Differentiable Optimization

Non-Linear Conjugate Gradient

@ Third Newton approximation: non-linear conjugate gradient.
@ Use the following search direction in findMinScaled.m:
if funEvals > 1
alpha = min(1,2+%(f_old-f)/(g’*g));
beta = (g’*g)/(g_old’*g_old);
d = g + betaxd;

else
d

g;
end

Mark Schmidt MLSS 2011 Differentiable Optimization

Non-Linear Conjugate Gradient

Non-Linear Conjugate Gradient:

© 00N O W N

10
11
13

251

[N~ ST =o' JET NS

|
NN

1

.41623e-05
.00669e-04
.03711e-05
.70114e-06
.70587e-05
.96374e-05
.62645e-06
.88296e-05
.61296e-06

.56501e-04

e = T = S

1.

.83619e+03
.28081e+03
.24034e+03
.19428e+03
.15260e+03
.13544e+03
.10123e+03
.08414e+03
.08268e+03

08880e+02

el i B = o o o O I

4

.51905e+02
.21334e+02
.88791e+02
.58569e+02
.47617e+02
.79580e+02
.35990e+02
.37598e+02
.24459e+02

.33766e-01

Note that d is not necessarily a descent direction and typically you
need to implement a check for this. Performance is improved by
preconditioning and /or using a more accurate line-search.

Mark Schmidt

MLSS 2011

Differentiable Optimization

Quasi-Newton Methods

@ Fourth Newton approximation: quasi-Newton methods.
@ The L-BFGS approximation:

if funEvals > 1

else

end

g_diff = g-g_old;
[S,Y] = lbfgsUpdate(S,Y,-alpha*d,g_diff,memory) ;
HO = -alpha*(d’*g_diff)/(g_diff’*g_diff);

d = lbfgs(g,S,Y,H0);
alpha = 1;

S = zeros(length(w),0);

Y = zeros(length(w),0);
HO = 1;
d =g;

@ Typically, you also need update skipping/damping to preserve
positive-definiteness of the approximation.

Mark Schmidt

MLSS 2011 Differentiable Optimization

Quasi-Newton Methods

Quasi-Newton Methods:

© 00 O W N

11
12
13

76

N R I = O I = = =

1.

Solution found.

Mark Schmidt

.41623e-05
.00000e+00
.52249e-03
.46536e-01
.00000e+00
.13685e-01
.00000e+00
.00000e+00

00000e+00

MLSS 2011

L i)

.83619e+03
.11759e+03
.45874e+03
.24791e+03
.20050e+03
.18137e+03
.14498e+03
.07778e+03

.07632e+02

Differentiable Optimization

= N O O~ DD

W

.51905e+02
.51692e+02
.455657e+02
.77168e+02
.55687e+01
.50644e+01
.55459e+01
.48323e+02

.80271e-03

Hessian-Free Newton

o Fifth Newton approximation: Hessian-Free Newton.

cgMaxIter = min(maxEvals-funEvals);
cgForce = min(0.5,sqrt (norm(g)))*norm(g) ;
HvFunc = @(v)autoHv(v,w,g,funObj);

[d,cglters,cgRes] = conjGrad(HvFunc,g,cgForce,cgMaxIter);
funEvals = funEvals + cglters;
alpha = 1;

Mark Schmidt MLSS 2011 Differentiable Optimi:

Quasi-Newton Methods

Quasi-Newton Methods:

Q0 01 W

10
14
17
30
32
35

141

N R = T = T ==Y

1.

.00000e+00
.00000e+00
.00000e+00
.00000e+00
.00000e+00
.00000e+00
.00000e+00
.00000e+00
.00000e+00

00000e+00

N WP O O, P, NN

1.

.81156e+03
.06682e+03
.76603e+03
.19297e+03
.70365e+02
.20963e+02
.74937e+02
.61888e+02
.92318e+02

07633e+02

SN NDND 00 = 00 O

9.

.38607e+03
.85128e+02
.21305e+02
.52940e+02
.09050e+01
.69460e+01
.61594e+02
.77862e+01
.26920e+01

65971e-03

Performance is substantially improved by preconditioning (i.e.
diagonal or use L-BFGS).

Mark Schmidt

MLSS 2011

Differentiable Optimization

Extensions

Extensions:
@ Use another data set.
@ Use another loss function (i.e. smooth SVMs).

@ More accurate linesearch (cubic interpolation, Wolfe
line-search).

Variants of Nesterov's method.

Non-monotonic Armijo condition.

Check that non-linear CG gives a descent direction.
Update skipping/damping in L-BFGS.

Preconditioning in Hessian-free Newton.

Mark Schmidt MLSS 2011 Differentiable Optimization

References

Most of this lecture is based on material from Nocedal and
Wright's very good " Numerical Optimization” book.

Mark Schmidt MLSS 2011 Differentiable Optimization

