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Motivation: Properties of Convex Functions

Two key properties of convex functions:
@ All local minima are global minima.

@ Global rate of convergence analysis.

Mark Schmidt MLSS 2011 Convex Analysis



Convexity: Zero-order condition

A real-valued function is convex if
f(Ox+ (1 —0)y) < 0f(x)+ (1 —0)f(y),

for all x, y € R" and all 0 < 0 < 1.

@ Function is below the chord from x to y.
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Convexity: Zero-order condition

A real-valued function is convex if
f(Ox+ (1 —0)y) < 0f(x)+ (1 —0)f(y),

for all x, y € R" and all 0 < 0 < 1.

@ Function is below the chord from x to y.

@ Show that all local minima are global minima.
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Exercise: Convexity of Norms

A real-valued function f is a norm |f:
Q f(x) >0, f(0)=0.
Q f(6x) = |6|f(x).
Q f(x+y) < f(x)+1f(y).

Show that norms are convex.
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Exercise: Convexity of Norms

A real-valued function f is a norm |f:
Q f(x) >0, f(0)=0.
Q f(6x) = |6|f(x).
Q f(x+y) < f(x)+1f(y).

Show that norms are convex.

@ Use triangle inequality then homogeneity.
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Strict Convexity

A real-valued function is strictly convex if
f(Ox+ (1 —0)y) < 0f(x)+ (1 —0)f(y),

for all x, y € R" and all 0 < 6 < 1.

e Function is strictly below the chord between x to y.
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Strict Convexity

A real-valued function is strictly convex if
f(Ox+ (1 —0)y) < 0f(x)+ (1 —0)f(y),

for all x, y € R" and all 0 < 6 < 1.

e Function is strictly below the chord between x to y.

@ Show that global minimum of strictly convex function is
unique.
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Convexity: First-order condition

A real-valued differentiable function is convex iff

F(x) > fy) + VF(y) (x - y),

for all x, y € R".

@ The function is globally above the tangent at y.
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Convexity: First-order condition

A real-valued differentiable function is convex iff

F(x) > fy) + VF(y) (x - y),

for all x, y € R".

@ The function is globally above the tangent at y.

@ Show that any stationary point is a global minimum.
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Exercise: Zero- to First-Order Condition

Show that zero-order condition,
f(Ox+ (1 —0)y) < 0f(x)+ (1 —0)f(y),
implies first-order condition,

fF(x) > f(y)+ VF(y) (x - y).
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Exercise: Zero- to First-Order Condition

Show that zero-order condition,
f(Ox+ (1 —0)y) < 0f(x)+ (1 —0)f(y),
implies first-order condition,

fF(x) > f(y)+ VF(y) (x - y).

O Use: Ox+(1—-0)y =y +0(x—y).
O Use f 0d) —f
0—0 0
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Convexity: Second-order condition

A real-valued twice-differentiable function is convex iff
V2f(x) =0

for all x € R".

@ The function is flat or curved upwards in every direction.
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Convexity: Second-order condition

A real-valued twice-differentiable function is convex iff
V2f(x) =0

for all x € R".

@ The function is flat or curved upwards in every direction.

A real-valued function f is a quadratic if it can be written in the

form:
f(x) =x"Ax+b"x +c.

Show sufficient conditions for a quadratic function to be convex.
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Exercise: Convexity of Basic Functions

Show that the following are convex:

0 f(x) = exp(ax)

f(x )—xlogx (for x > 0)
f(x)=a'x

F(x) = [IxII?

f(x) = max;{x;}
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Other Examples of Convex Functions

Some other notable convex functions:
0 (x,y) = log(e* + &)
@ f(X) =logdet X (for X positive-definite).
© f(x,Y)=xTY 1x (for Y positive-definite)

Mark Schmidt MLSS 2011 Convex Analysis



Operations that Preserve Convexity

@ Non-negative weighted sum:
F(x) = 01(x) + 0262(x) + - -+ Onf(%).
@ Composition with affine mapping:
g(x) = f(Ax + b).
© Pointwise maximum:

f(x) = max{fi(x)}.
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Operations that Preserve Convexity

@ Non-negative weighted sum:
F(x) = O1f1(x) + O2f2(x) + - - + Onfa(x).
@ Composition with affine mapping:
g(x) = f(Ax + b).
© Pointwise maximum:
f(x) = max{fi(x)}.
Show that least-residual problems are convex for any £,-norm:
F(x) = [|Ax — bl
Show that SVMs are convex:
f(x) = ||x]|*> + Ci max{0,1 — b;a; x}.
i=1
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Motivation: Properties of Convex Functions

Two key properties of convex functions:
@ All local minima are global minima.

@ Global rate of convergence analysis.
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Convergence Rate: Strongly-Convex Functions

@ Assume that f is a twice-differentiable, where for all x we have
pl 2 VE(x) =2 LI,

for some > 0 and L < oc.
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Convergence Rate: Strongly-Convex Functions

@ Assume that f is a twice-differentiable, where for all x we have
pl 2 VE(x) =2 LI,

for some > 0 and L < oc.

@ By Taylor's theorem, for any x and y we have
T 1 T2
Fly) = f(x) + VEx) (v = x) + 5y = x) " VEF(2)(y = x),

for some z.
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Convergence Rate: Strongly-Convex Functions

@ From the previous slide, we get for all x and y that
T L 2
Fly) < F0) + VEG) (v = x) + Slly =I5,

F(y) 2 F(x) + V) Ty =) + Slly = xI%
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Convergence Rate: Strongly-Convex Functions

@ From the previous slide, we get for all x and y that
T L 2
Fly) < F0) + VEG) (v = x) + Slly =I5,

F(y) 2 F(x) + V) Ty =) + Slly = xI%
@ Use these to show that the gradient iteration
Xk+1 = xk — (1/L)VF(xk),
has the linear convergence rate

Fxk) = F(x) < (1= /L) [F(x0) — F(x)].
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Convergence Rate: Strongly-Convex Functions

@ From the previous slide, we get for all x and y that
T L 2
Fly) < F0) + VEG) (v = x) + Slly =I5,

F(y) 2 F(x) + V) Ty =) + Slly = xI%
@ Use these to show that the gradient iteration
X1 = xk — (1/L)VF(x),
has the linear convergence rate
Fxk) = F(x) < (1= /L) [F(x0) — F(x)].

@ Use this result to get a convergence rate on ||xx — x«||.
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Convergence Rate: Strongly-Convex Functions

@ From the previous slide, we get for all x and y that
T L 2
Fly) < F0) + VEG) (v = x) + Slly =I5,

F(y) 2 F(x) + V) Ty =) + Slly = xI%
@ Use these to show that the gradient iteration
X1 = xk — (1/L)VF(x),
has the linear convergence rate
Fxk) = F(x) < (1= /L) [F(x0) — F(x)].

@ Use this result to get a convergence rate on ||xx — x«||.
e Show that if ;1 = 0 we get the sublinear rate O(1/k).
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Most of this lecture is based on material from Boyd and
Vandenberghe's very good " Convex Optimization” book, as well as
their online notes.
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