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(Gaussian Process

e Stochastic process:
e pbasically, a set of random variables.
* may be infinite.
e usually related in some way.
¢ (Gaussian process:
e cach variable has a Gaussian distribution

e every finite set follows multivariate Gaussian



Monthly average atmospheric CO2 concentration, ppm
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To date kriging has been used in a variety of disciplines, including the following:

« Environmental sciencel®!

Hydrogeology!6171€]
Mining!®l10]

Natural resourcesl! 1112]
Remote sensingl!3)

Real estate appraisall'41[15]

and many others.

Mauna Loa, CO2. GP model fit on data until Dec 2003. 95% predicted confidence
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(Gaussian Processes

e GPs specified by mean/covariance function:
e m(Xx) = E[f(X)].
o K(x,x') = E[(f(x) - m(x))(f(x’) - m(x’))"].
e f(x) ~ GP[m(x),k(x,x)].

e 2 questions:
e Why do we care?

e How is this related to kernels?



Linear regression
example

e Simple linear regression:
* f(x) = p(x)™w
e w~N(Q0,.2)

¢ The mean and covariance are given by
* E[f(x)] = d(x)E[w] = 0.

o E[f(x)f(x))T] = (x)TE[WWT] p(X’) = P(X)T2 $(X')
= Kk(x,X).



RBF Covarianc
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e Take: : \/\/ |
o Kk(x,y) = exp(-llx - yll2/20). I\ \/ 4
® prior distribution over some E :

smooth functions (3). prior
e with efficient operations : f/
e Use this as prior/regularizer \}/ {/

® prlor: f* ~ N(O,K(X*,X*)) —5 inp8t,>f

e posterior: f* | x*,x,f ~ N(K(x*,x)K(x,x)-f,
K(x*,x*) - K(x*,X)K(X,X) TK(X,x*))



Is this the same as using
kernels?

Yes|

And why exacty
are you wasting
my time?

Vo ¥___—‘



Outline
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e Marginal Likelihood



Maximum Likelihood

e Maximum likelihood:

o argmaxw P(y | X, w)
o Usually:

e consistent (converges as n => x)

o efficient (rate is fastest possible as n => )
e But:

e usually we have finite n

e sometimes doesn’t make sense

e over-fitting



Maximum a posteriori (MAP)

e Assume a prior p(w) on random variable w.
e Bayes rule to maximize w given {y,x}:
* p(wly, x)=ply I x, w)p(w)/p(y | x)
e Denominator does not depend on w:
e argmaxw log p(y | X, w) + log p(w)
o |e.:
o argmaxw [IXw - ylI2 + llwll2/a

e Does this make the right decision?



Consider simple case of five hypotheses:

W] W2 W3 W4
p(Wil y:x) = | p(wa| ,%) = | p(ws| y,x) = | p(ws| %,x) =
0.25 0.3 0.25 07
oe - - \r© é A

According to MAP (w-), thumbs down.
According to non-MAP, thumbs up!
p(w=wz) = 0.3, p(w#w>) = 0.7.
Thumbs down (MAP) or thumbs up (Bayesian)?




Image + annotation MAP solution Average of 20 samples Error estimates

Figure 2: Example image with the boundary annotation (left) and the error estimates obtained using our
method (right). Thin structures of the object are often lost in a single MAP solution (middle-left), which are
recovered by averaging the samples (middle-right) leading to better error estimates.



Bayesian Inference

e Bayesian approach considers the full posterior:
* p(wly, x)=plylx, w)p(w)/p(y | x)
e Prediction by integrating over uncertainty:
* p(y*Ix%y, x)=[p(y* | x*, w)p(w |y, x)dw.
e Note: integrate instead of maximize.
e (Can also add risk function:
e not generally optimized by posterior mode (MAP)
e squared error minimized by posterior mean.

e absolute error minimized by posterior median.



Solving Integrals

e How do we solve these integrals?

numerical integration (low dim)

conjugate priors (Gaussian likelihood w/ GP prior)
subset methods (Nystrom)

fast linear algebra (Krylov, fast transforms, KD-trees)
variational methods (Laplace, mean-field, EP)

Monte Carlo methods (Gibbs, MH, particle)



Outline



Marginal Likelihood

o NMarginal likelihood is the denominator:

* p(y I x)=/p(y | x, w)p(w)dw.

e | ikelihood of data given hypothesis class:
* p(y I'x, Ho) =/p(y I X, w)po(w)dw
* p(y I'x, Hi) =fp(y I X, w)p1(w)dw
e Called ‘evidence’ instead of ‘likelihood’.
e H¢ can include Ho

e Alternative to cross-validation. (?77)



Example: Polynomial Regresssion
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Example: Polynomial Regresssion
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e |dea: favours simplest model that explains data.

e But note: doesn’t say whether any of your models makes sense.



Bayesian Model Selection

e Which hypothesis class should we use?
e Bayesian model selection idea 1:
e Choose Hito maximize marginal likelihood.
e Bayesian model averaging:
e |ntegrate over Hi, weighted by posterior (harder)
e Bayesian model selection idea 2:
e Optimize parameters of H

e Type [l Maximum Likelihood (or Type || MAP)



Type Il Maximum Likelihood

e Maximum likelihood:
e argmaxw p(y | X, w)
e MAP:
o argmaxw P(y | X, w)p(w)
e Type |l maximum likelihood:
e argmaxa p(y | X, a) =fp(y | x, w)p(w | a)dw
e Type Il MAP:

* argmaxa p(y | x, a)p(a).



Type Il ML for GPs

Type Il ML for Gaussian processes:

e argming Y'(K (a) + o2l)y + logdet(K(a) + o2l)
Parameters a could be strength of prior:

e -|og p(w) = llwill2/a

Use one ai for each wi => variable selection

e automatic relevance determination (ARD).
Use one ai for each x; => example selection

e relevance vector machine (RVM).



ARD Prior
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Figure 1: Left: 1D example of the implicit ARD prior. The £; and £ norms are included for com-
parison. Right: Plot of the ARD prior across the feasible region as parameterized by «. A factorial
prior given by —log p(x) o ), |2;|" ~ ||z||o is included for comparison. Both approximations
to the £y norm retain the correct global minimum, but only ARD smooths out local minima.

e Sparser solutions than L1-regularization.

e Fewer local minima than Lp-regularization (p<1)



Sparseness of RVM

Total Number of Classification Errors and Average Number of Retained Kernel Basis Functions (in Parentheses, Rounded
to the Nearest Integer) for Various Classifiers on Six of the Seven Benchmark Data Sets Described in Table 1

Crabs Iris FGlass AML/ALL Colon Yeast
| RBF RBF RBF linear linear linear
SVM 2 (53) 5 (124) | 62 (365) 3 3D | 75 (32) 7 (155)
RVM 0 (4) 10 (37) 61 (74) 5 (3) 84 (6) 12 (49)




Conclusion

e MAP estimation:

® |t's easy to make work

e but sometimes it does weird stuff
e Bayesian:

¢ |t's hard to make work

e but sometimes it makes more sense



