
Gaussian Processes



Gaussian Process
• Stochastic process: 

• basically, a set of random variables.

• may be infinite.

• usually related in some way.

• Gaussian process:

• each variable has a Gaussian distribution

• every finite set follows multivariate Gaussian





Gaussian Processes
• GPs specified by mean/covariance function:

• m(x) = E[f(x)].

• k(x,xʼ) = E[(f(x) - m(x))(f(xʼ) - m(xʼ))T].

• f(x) ~ GP[m(x),k(x,xʼ)].

• 2 questions:

• Why do we care?

• How is this related to kernels?



Linear regression 
example

• Simple linear regression:

• f(x) = ϕ(x)Tw

• w ~ N(0,∑)

• The mean and covariance are given by

• E[f(x)] = ϕ(x)E[w] = 0.

• E[f(x)f(xʼ)T] = ϕ(x)TE[wwT] ϕ(xʼ) = ϕ(x)T∑ϕ(xʼ) 
= k(x,xʼ).



RBF Covariance
• Take:

• k(x,y) = exp(-||x - y||2/2σ).

• prior distribution over some 
smooth functions

• with efficient operations

• Use this as prior/regularizer

• prior: f* ~ N(0,K(x*,x*))

• posterior: f* | x*,x,f ~  N(K(x*,x)K(x,x)-1f,
                   K(x*,x*) - K(x*,x)K(x,x)-1K(x,x*))



Is this the same as using 
kernels?

Yes



Outline

• Gaussian Process Bait and Switch

• Bayesian Statistics

• Marginal Likelihood



Maximum Likelihood
• Maximum likelihood:

• argmaxw p(y | x, w)

• Usually:

• consistent (converges as n => ∞)

• efficient (rate is fastest possible as n => ∞)

• But:

• usually we have finite n

• sometimes doesnʼt make sense

• over-fitting



Maximum a posteriori (MAP)
• Assume a prior p(w) on random variable w.

• Bayes rule to maximize w given {y,x}:

• p(w | y, x) = p(y | x, w)p(w)/p(y | x)

• Denominator does not depend on w:

• argmaxw log p(y | x, w) + log p(w)

• I.e.:

• argmaxw ||Xw - y||2 + ||w||2/α

• Does this make the right decision?



w1 w2 w3 w4

p(w1| y, x) = 
0.25

p(w2| y, x) = 
0.3

p(w3| y, x) = 
0.25

p(w3| y, x) = 
0.2

Consider simple case of five hypotheses:

According to MAP (w2), thumbs down.
According to non-MAP, thumbs up!

p(w=w2) = 0.3, p(w≠w2) = 0.7.
Thumbs down (MAP) or thumbs up (Bayesian)?





Bayesian Inference
• Bayesian approach considers the full posterior:

• p(w | y, x) = p(y | x, w)p(w)/p(y | x)

• Prediction by integrating over uncertainty:

• p(y* | x*, y, x) = ∫p(y* | x*, w)p(w | y, x)dw.

• Note: integrate instead of maximize.

• Can also add risk function:

• not generally optimized by posterior mode (MAP)

• squared error minimized by posterior mean.

• absolute error minimized by posterior median.



Solving Integrals

• How do we solve these integrals?

• numerical integration (low dim)

• conjugate priors (Gaussian likelihood w/ GP prior)

• subset methods (Nystrom)

• fast linear algebra (Krylov, fast transforms, KD-trees)

• variational methods (Laplace, mean-field, EP)

• Monte Carlo methods (Gibbs, MH, particle)
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Marginal Likelihood
• Marginal likelihood is the denominator:

• p(y | x) = ∫p(y | x, w)p(w)dw.

• Likelihood of data given hypothesis class:

• p(y | x, H0) = ∫p(y | x, w)p0(w)dw

• p(y | x, H1) = ∫p(y | x, w)p1(w)dw

• Called ʻevidenceʼ instead of ʻlikelihoodʼ.

• H1 can include H0

• Alternative to cross-validation. (???)



Example: Polynomial Regresssion



Example: Polynomial Regresssion

• Idea: favours simplest model that explains data.

• But note: doesnʼt say whether any of your models makes sense.



Bayesian Model Selection
• Which hypothesis class should we use?

• Bayesian model selection idea 1:

• Choose Hi to maximize marginal likelihood. 

• Bayesian model averaging:

• Integrate over Hi, weighted by posterior (harder)

• Bayesian model selection idea 2:

• Optimize parameters of H

• Type II Maximum Likelihood (or Type II MAP)



Type II Maximum Likelihood
• Maximum likelihood:

• argmaxw p(y | x, w)

• MAP:

• argmaxw p(y | x, w)p(w)

• Type II maximum likelihood:

• argmaxα p(y | x, α) = ∫p(y | x, w)p(w | α)dw

• Type II MAP:

• argmaxα p(y | x, α)p(α).



Type II ML for GPs
• Type II ML for Gaussian processes:

• argminα yT(K (α) + σ2I)y + logdet(K(α) + σ2I)

• Parameters α could be strength of prior:

• - log p(w) = ||wi||2/α

• Use one αi for each wi => variable selection

• automatic relevance determination (ARD).

• Use one ai for each xi => example selection

• relevance vector machine (RVM).



ARD Prior

• Sparser solutions than L1-regularization.

• Fewer local minima than Lp-regularization (p<1)



Sparseness of RVM



Conclusion

• MAP estimation:

• itʼs easy to make work

• but sometimes it does weird stuff

• Bayesian:

• itʼs hard to make work

• but sometimes it makes more sense


