
Introduction to Optimization:
Theory and Practice (in 45 minutes)

Mark Schmidt

Deep Learning and Reinforcement Learning
Summer School 2022

Introduction

• 1st paragraph of CIFAR e-mail:

– I am writing … to invite you to deliver the lecture on “Introduction to
Optimization – Theory & Practice”.

• My reply after reading first paragraph:

– Yup, happy to do it!

• 3rd (unread) paragraph of CIFAR e-mail:

– This year, we are asking all of our speakers to provide a 45 minute lecture.

• Me after looking later reading full invite:

– “How do I possibly cover optimization theory and practice in 45 minutes?”

Real Introduction

• I am assuming you have already trained a deep learning model.

– Probably using stochastic gradient descent (SGD) or a variant like Adam.

• And it might useful if I could answer questions like these:

– Question 1: How do I set the step size?

– Question 2: How I pick the mini-batch size?

– Question 3: Should I use variance reduction?

– Question 4: What about random shuffling?

– Question 5: Should I use importance sampling?

– Question 6: Are there faster algorithms?

– Question 7: Should we just use Adam?

Disclaimer

• These questions are complicated, depending on many factors.

• I will just focus on applying SGD to differentiable functions.
– And I will assume the basic setting of IID data (no reinforcement learning).

• I will overview some important trade-offs to consider in this setting.
– Which may help improve your understanding of these questions.

– I will necessarily need to skip over a lot of precise details.

• If you want to see the long/detailed version, see here:
– https://www.cs.ubc.ca/~schmidtm/Courses/5XX-S22 (in progress, 6 hours in).

– https://www.cs.ubc.ca/~schmidtm/Courses/5XX-S20 (old version).

https://www.cs.ubc.ca/~schmidtm/Courses/5XX-S22
https://www.cs.ubc.ca/~schmidtm/Courses/5XX-S20

Optimization and Gradient Descent

• We usually “train” models by solving an optimization problem.

– We have ‘d’ parameters ‘w’ that we can modify the fit the data better.

• For a deep neural network, this would contain the parameters of the various layers.

– We have a function ‘f’ that measures how well we fit the data.

• Usually this function is the average over a set of ‘n’ functions fi.

• Each fi measures how well we fit training example ‘i’.
– Could be squared error or cross entropy of network’s predictions.

• Most popular DL algorithm is stochastic gradient descent (SGD).

Deterministic and Stochastic Gradient Descent

• For minimizing functions of the form:

• Deterministic gradient descent repeats the iteration:

– For a “step size” 𝛼𝑘.

• Stochastic gradient descent repeats the iteration:

– For a random training example ‘ik’.
– Key advantage is cost per iteration: 1 billion times faster for 1 billion examples.

Deterministic Gradient Descent in 1 Dimension

• Deterministic gradient descent is based on a simple observation:

– Give parameters ‘w’, the direction of largest decrease is −𝛻 f(w).

Deterministic Gradient Descent in 1 Dimension

• Deterministic gradient descent is based on a simple observation:

– Give parameters ‘w’, the direction of largest decrease is −𝛻 f(w).

Deterministic Gradient Descent in 1 Dimension

• Deterministic gradient descent is based on a simple observation:

– Give parameters ‘w’, the direction of largest decrease is −𝛻 f(w).

Deterministic Gradient Descent in 1 Dimension

• Deterministic gradient descent is based on a simple observation:

– Give parameters ‘w’, the direction of largest decrease is −𝛻 f(w).

Deterministic Gradient Descent in 1 Dimension

• Deterministic gradient descent is based on a simple observation:

– Give parameters ‘w’, the direction of largest decrease is −𝛻 f(w).

• Deterministic gradient descent (DGD) converges with constant 𝛼𝑘.

• Stochastic gradient descent (SGD) converges with decreasing 𝛼𝑘.

• Both methods are local optimization methods:
– May not find the global mimimum.

– But with appropriate step sizes, we have that 𝛻𝑓(𝑤𝑘) converges to 0.

DGD and SGD in 2 Dimensions

Polyak-Lojasiewicz Inequality and Invexity

• For some functions, we can show that DGD/SGD find a global minimum.

• Recent works argue that some deep learning problems satisfy PL inequality.
– Polyak-Lojasiewicz inequality.

• “Gradient increases at least quadratically as we increase f(w) above global minima”.

– PL condition implies invexity.
• Invexity is a generalization of convexity, where 𝛻𝑓 𝑤𝑘 = 0 implies that 𝑤𝑘 is a global min.

Question 1: How do I set the step size?

• For gradient descent, there is a trade-off between:

• The number ‘L’ is how fast the gradient can change:

– The “Lipschitz constant”: 𝛻𝑓 𝑤 − 𝛻𝑓 𝑣 ≤ 𝐿| 𝑤 − 𝑣 |

– Need smaller steps for bigger ‘L’.

Question 1: How do I set the step size?

• For gradient descent, there is a trade-off between:

• If 𝛼𝑘 < 2/𝐿, DGD is guaranteed to decrease the function ‘f’.

• If 𝛼𝑘 is much smaller than 2/L, DGD will converge more slowly.

– Step size is too small.

• If 𝛼𝑘 is bigger than 2/L, you might increase the function.

– Step could be too big and “overshoot” region where function decreases.

– But you might get lucky and decrease the function a lot.

• In practice, people use clever step sizes or line searches to make DGD work well.

Comparison of Fixed Step Sizes for DGD

• 25 steps of deterministic gradient descent with different 𝛼𝑘.

• Progress is very slow if 𝛼𝑘 is too small.

Comparison of Fixed Step Sizes for DGD

• Increasing the step size:

• Progress can be faster if 𝛼𝑘 ≥ 2/𝐿 or it may may increase function.

Comparison of Adaptive Step Sizes for DGD

• For DGD you can also use clever step sizes or line-searches.

• Better than fixed steps in practice, do not work for SGD in general.

Question 1b: How do I set the SGD step size?

• For stochastic gradient descent, there is a second trade-off:

• The number 𝜎𝑘
2 measures the variation in the gradients.

– We have 𝜎𝑘2 =
1

𝑛
σ𝑖=1
𝑛 ||𝛻𝑓𝑖 𝑤

𝑘 − 𝛻𝑓(𝑤𝑘) ||2.

– Need smaller steps for bigger 𝜎𝑘
2 (but also depends on | 𝛻𝑓 𝑤𝑘 |).

Question 1b: How do I set the SGD step size?

• For stochastic gradient descent, there is a second trade-off:

• If 𝛻𝑓 𝑤𝑘
2
≫ 𝛼𝑘𝜎𝑘

2, SGD is guaranteed to decrease expected ‘f’.

– As long as we still have 𝛼𝑘 < 2/𝐿.

– For DGD, we do not need to worry about this trade-off because 𝜎𝑘 = 0.

• If 𝛼𝑘𝜎𝑘
2 ≫ 𝛻𝑓 𝑤𝑘

2
, noise in SGD makes us increase expected ‘f’.

– Step size if too big, causing the noise to interfere with progress.

– Need to decrease step size to re-gain progress, but this slows down convergence.

Question 1b: How do I set the SGD step size?

• For stochastic gradient descent, there is a second trade-off:

• Optimization: we want 𝛻𝑓 𝑤𝑘 to converge to 0 as ‘k’ grows.
– So we need to use decreasing step sizes to guarantee continued progress.

• But as we decrease the step size SGD will converge slower.

• Machine learning: we only need 𝛻𝑓(𝑤𝑘) to close to 0.
– We expect test error to similar for all wk “close enough” to stationary point.

• If you measure the test error to 2 decimal places, may not need 10 decimal places of accuracy.

– For any “closeness”, we could use a small-enough constant step size 𝛼𝑘 = 𝛼.
• Guarantees progress until 𝛻𝑓(𝑤𝑘) is “close enough” to zero.
• But in areas where gradient is small, SGD can behave erratically.

Question 1b: How do I set the SGD step size?

• In practice, SGD algorithm does not have access to 𝛻𝑓 𝑤𝑘 or 𝜎𝑘.
– But we can use the trade-offs to guide practical choice of step size.

Question 1b: How do I set the SGD step size?

• In practice, SGD algorithm does not have access to 𝛻𝑓(𝑤𝑘) or 𝜎𝑘.
– But we can use the trade-offs to guide practical choice of step size.

Question 2: How do I pick the mini-batch size?

• Instead 1 random example, we often use a mini-batch in SGD:

– We can often compute gradient of many examples in parallel.

– The mini-batch gives a better approximation of true gradient 𝛻𝑓(𝑤𝑘).

• With random mini-batches, second part of trade-off changes to:

– “With a mini-batch size of 100, effect of noise is divided by 100.”

– “With a mini-batch size of 100, you can use a step size that 100-times larger.”
• As long as the step size is still less than 2/L.

Question 2b: How do I grow the mini-batch size?

• If 𝛻𝑓 𝑤𝑘
2
≫ 𝛼𝑘𝜎𝑘

2/|Bk|, mini-batch SGD guarantees progress.

– Again, you can decrease 𝛼𝑘 to continue progress as 𝛻𝑓 𝑤𝑘 goes to 0.

– Or, you can increase the batch size |𝐵𝑘| as 𝛻𝑓 𝑤𝑘 goes to 0 (“batching”).

• Growing batch sizes gives convergence with a constant step size.

• The situation is better if you have a finite data set.

– If you sample mini-batch without replacement from ‘n’ examples:

– Drives the effect of 𝜎 to 0 as |𝐵𝑘| approaches ‘n’ (instead of ∞).

• Growing batches allow using clever step sizes and line-searches.

Comparison of Deterministic, Stochastic, and Hybrid

• Comparing DGD to SGD and a growing batch (“hybrid”) method:

Question 3: Should I use variance reduction?

• SGD with a growing batch size (“batching”):
– Use an estimate of 𝛻𝑓(𝑤𝑘) where 𝜎𝑘 converges to 0 as 𝑤𝑘 goes to 𝑤∗.

– But batching may lose low iteration cost of SGD.

• Variance-reduced stochastic gradient methods (like SAG and SVRG):
– Design an estimate of 𝛻𝑓(𝑤𝑘) where 𝜎𝑘 converges to 0 as 𝑤𝑘 goes to 𝑤∗.

– But only need 1 random example per iteration.
• So these methods have the low iteration cost of SGD.

• Variance-reduced methods remove second part of trade-off.
– This improves convergence speed a lot for under-parameterized models.

– But variance reduction is not needed for over-parameterized models.

Over-Parameterized Gradient Descent (OGD)

• A model is over-parameterized if it can fit data with training error 0.

• How does this affect optimization?

– In this setting, when we minimize ‘f’ we also minimize each ‘fi’.

– So at a global minimum 𝑤∗ we have 𝛻𝑓𝑖 𝑤∗ = 0 for all ‘i’.

– And this means that 𝜎∗
2 = 0 (there is no noise at the minimum).

– So 𝜎𝑘 goes to 0 as 𝛻𝑓(𝑤𝑘) goes to 0.

• I will use term OGD for over-parameterized gradient descent.

• When we apply SGD with a constant step size to an over-parameterized problem.

Over-Parameterized Gradient Descent (OGD)

• Since 𝜎𝑘 goes to 0, OGD is less affected by the second trade-off.
– It converges like DGD with the iteration cost of SGD.

– No need to decrease step sizes or increase batch sizes.

– Still expect good performance if you are close to being over-parameterized.
• Will not converge but will get close to solution with large steps, since 𝜎∗

2 will be small.

Question 3: Should I use variance reduction?

• For over-parameterized models:

– No need for variance reduction, just use OGD.

• Variance-reduce methods might be slower than SGD with constant step size.

• For under-parameterized models:

– Variance reduction may lead to faster convergence.

• Example: generative adversarial networks (GANs).

– GAN loss cannot be driven to zero.

– So variance-reduced SGD can lead to faster convergence.

Question 1c: How do I adjust the step size?

• Could we somehow adjust the SGD step size as we go?
– Accounting for both trade-offs and hoping to get “lucky”?

• Lots of methods have been proposed to do this.
– “Update step size based on some simple statistics”.
– “Do a line-search based on the mini-batch”.
– “Do gradient descent on the step size”.
– Mark being provocative: almost all of these methods are bad.

• Most of these methods have one at least of these problems:
– Introduce a new hyper-parameter that is just as hard to tune.
– Do not converge theoretically (can catastrophically fail).
– Converges theoretically but works badly in practice.
– Need to assume that 𝜎𝑘 goes to 0.

Question 1c: How do I adjust the step size?

• For under-parameterized problems with fixed batch sizes:
– I have not had good luck getting anything working well across problems.

• And I have tried a lot of things over the years.

– My students say that the recent “coin betting” method works well.
• And is justified theoretically.

• For over-parameterized problems or batching (where 𝜎𝑘 goes to 0):
– Can often adapt clever step sizes or line searches designed by DGD.

• Example: for OGD you can use an Armijo backtracking line search.
– “Decrease step size if it makes less progress than a step size like 1/L would.”

– Theory: “Performs as well or better as best fixed step size” (without knowing ‘L’).
• And with careful implementation, cost is less in practice than trying out 2 fixed step sizes.

OGD with Armijo Line-Search

• SGD + Armijo outperforms other methods on many benchmarks.

OGD with Armijo Line-Search

• SGD + Armijo outperforms other methods on many benchmarks.

– Uses different step sizes on different datasets at different times:

Question 4: What about random shuffling?

• How should we choose the random example?
– Classic SGD theory: must sample ik uniformly from {1,2,…,n}.

• Or with importance sampling from a fixed distribution.

• In practice, people often use random shuffling:
– Compute a random permutation of the training examples.

– Go through this random permutation in order.
• Guarantees each example is chosen at least once every ‘n’ iterations.

• Empirical evidence that random shuffling converges faster.
– Theory is catching up, showing that it likely is always faster.

Question 5: Should I use importance sampling?

• What about sampling ik from a non-uniform distribution?

• For OGD, importance sampling leads to a faster method:

– Suppose you know the Lipschitz constant Li of each training example.

– OGD converges faster if you bias sampling by the Li values.

• “If the gradient of example ‘i’ can change quickly, sample it more often.”
– For classification problems, the “local” Li is small if the examples are correctly classified.

• Normally OGD needs a step size less 2/max(Li), this allows step sizes less 2/mean(Li).

• Importance sampling may also help in “low noise” scenarios.

– But if 𝜎∗ is large, we do not expect important sampling to help.

Question 6: Are there faster algorithms?

• We have faster deterministic algorithms than DGD in various setttings:
– For quadratic functions, we can use the heavy-ball method:

• Which adds a momentum term to DGD (for some momentum parameter 𝛽𝑘 < 1).

– For convex functions, we have Nesterov’s accelerated gradient method(s):

• Which can add a “gradient difference” to the heavy-ball method.

– Nearby a strict local minimum, we can use variations on Newton’s method:

• Which uses or approximates the second-derivative matrix to converge faster locally.

Gradient Descent vs. Heavy-Ball Method

Gradient Descent vs. Heavy-Ball Method

• Adding momentum to DGD with fixed step size and momentum:

Gradient Descent vs. Heavy-Ball Method

• For deterministic quadratics, exist clever ways to set 𝛼𝑘 and 𝛽𝑘.

Gradient Descent vs. Heavy-Ball Method

• For deterministic quadratics, Newton converges in 1 step.

Question 6: Are there faster algorithms?

• For over-parameterized or growing batch settings:

– Ideas like momentum/Nesterov/Newton can make SGD converge faster.

• These faster methods should still work well in low-noise settings.

• But these methods do not improve the dependence on 𝜎𝑘.

– We do not expect them to converge faster if noise is large.

– These methods can even amplify the effect of the noise.

• SGD may need smaller step sizes if you are using momentum.

• You might need momentum parameter 𝛽𝑘 to converge to 0.

Question 7: Should we just use Adam?

• An extremely popular SGD variant is Adam:

– Combination of several ideas with good properties in specific settings:

• AdaGrad which has appealing properties for online learning.

• Momentum which has appealing properties for deterministic quadratic functions.

• Step sizes that are constant which has appealing properties for low-noise problems.

• The properties of Adam are not well understood.

– Analysis in original Adam paper was wrong.

– There are simple functions where Adam performs terribly.

– But it is difficult to beat Adam on some architectures like transformers.

– ???

Gradient Descent vs. Adam

• DGD vs. Adam:

Gradient Descent vs. Adam

• DGD vs. Adam:

Gradient Descent vs. Adam

• DGD vs. Adam:

Question 7: Should we just use Adam?
• Adam is successful because it better handles heavy-tailed noise?

– Nope, Adam still outperforms DGD/SGD on neural nets if you remove the noise.

• Adam is successful because we usually apply it to low-noise problems?
– Nope, Adam can still perform badly on over-parameterized problems.

• And it works great on some problems that are under-parameterized.

• Adam has more hyper-parameters to search over?
– Nope, many people just use the default parameters.

• We co-evolved networks architectures with Adam?
– We have “converged” to architectures that happen to be well-suited for Adam?

• Would explain abnormally good performance of default parameters.

– If so, what are the properties that make it well-suited?

• Batch normalization is another common method with missing theory.
– Though there are many recent papers on this topic.

Summary: The Questions vs. Over-Parameterization

• Answers to our questions depend on if you are over-parameterized.
• Question 1: How do I set the step size?

– Bigger is better, but make sure 𝛼𝑘 < 2/L and ||𝛻𝑓(𝑤𝑘)||2 < 𝛼𝑘𝜎𝑘
2.

– Constant or line-search for over-parameterized, decreasing and slow convergence for under-parameterized.

• Question 2: How I pick the mini-batch size?
– Bigger is better, if it does not increasing the iteration cost.
– Growing batch sizes makes under-parameterized look like over-parameterized.

• Question 3: Should I use variance reduction?
– No for over-parameterized, yes for under-parameterized.

• Question 4: What about random shuffling?
– Very likely a good idea.

• Question 5: Should I use importance sampling?
– Yes for over-parameterized, no for under-parameterized.

• Question 6: Are there faster algorithms?
– Yes for over-parameterized, no for under-parameterized.

• Question 7: Should we just use Adam?
– Maybe, I have more questions than answers here.

