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Introduction

15t paragraph of CIFAR e-mail:

— | am writing ... to invite you to deliver the lecture on “Introduction to
Optimization — Theory & Practice”.

My reply after reading first paragraph:
— Yup, happy to do it!
3'd (unread) paragraph of CIFAR e-mail:

— This year, we are asking all of our speakers to provide a 45 minute lecture.

Me after looking later reading full invite:

— “How do | possibly cover optimization theory and practice in 45 minutes?”



Real Introduction

* | am assuming you have already trained a deep learning model.
— Probably using stochastic gradient descent (SGD) or a variant like Adam.

* And it might useful if | could answer questions like these:
— Question 1: How do | set the step size?
— Question 2: How | pick the mini-batch size?
— Question 3: Should | use variance reduction?
— Question 4: What about random shuffling?
— Question 5: Should | use importance sampling?
— Question 6: Are there faster algorithms?
— Question 7: Should we just use Adam?



Disclaimer

These questions are complicated, depending on many factors.

| will just focus on applying SGD to differentiable functions.
— And | will assume the basic setting of IID data (no reinforcement learning).

| will overview some important trade-offs to consider in this setting.
— Which may help improve your understanding of these questions.
— | will necessarily need to skip over a lot of precise details.

If you want to see the long/detailed version, see here:
— https://www.cs.ubc.ca/~schmidtm/Courses/5XX-S22 (in progress, 6 hours in).
— https://www.cs.ubc.ca/~schmidtm/Courses/5XX-520 (old version).



https://www.cs.ubc.ca/~schmidtm/Courses/5XX-S22
https://www.cs.ubc.ca/~schmidtm/Courses/5XX-S20

Optimization and Gradient Descent

* We usually “train” models by solving an optimization problem.
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— We have ‘d’ parameters ‘w’ that we can modify the fit the data better.

* For a deep neural network, this would contain the parameters of the various layers.

— We have a function ‘t’ that measures how well we fit the data.
 Usually this function is the average over a set of ‘n’ functions f..

* Each f, measures how well we fit training example ".

— Could be squared error or cross entropy of network’s predictions.

* Most popular DL algorithm is stochastic gradient descent (SGD).



Deterministic and Stochastic Gradient Descent

* For minimizing functions of the form:
“‘\(\'\/): —;‘_ﬁ 1(:("‘)
* Deterministic gradient descent regéats the iteration:
w o W ’O(,‘VF(W,\,)
— For a “step size” ay,.
* Stochastic gradient descent repeats the iteration:

W, = w, 'o<,<V|";“(w,\,>

ki

— For a random training example i, .
— Key advantage is cost per iteration: 1 billion times faster for 1 billion examples.



Deterministic Gradient Descent in 1 Dimension

* Deterministic gradient descent is based on a simple observation:

— Give parameters ‘W’, the direction of largest decrease is —V f(w).
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Deterministic Gradient Descent in 1 Dimension

* Deterministic gradient descent is based on a simple observation:

— Give parameters ‘W’, the direction of largest decrease is —V f(w).

F)

Ling wafl’\
S'of)e Vl\(w,,)

Wo W,
glorc' Vilwy s
negaf.ve so we con decreust F(w)

Io\/ MaKing ‘W' more Pagifive

w
( minimi 9(7
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Deterministic Gradient Descent in 1 Dimension

* Deterministic gradient descent is based on a simple observation:

— Give parameters ‘W’, the direction of largest decrease is —V f(w).
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DGD and SGD in 2 Dimensions
—>) (e

* Deterministic gradient descent (DGD) converges with constant a;.
* Stochastic gradient descent (SGD) converges with decreasing a,.

 Both methods are local optimization methods:
— May not find the global mimimum.
— But with appropriate step sizes, we have that I’'f (w,,) converges to 0.




Polyak-Lojasiewicz Inequality and Invexity

* For some functions, we can show that DGD/SGD find a global minimum.
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* Recent works argue that some deep learning problems satisfy PL inequality.
— Polyak-Lojasiewicz inequality.
» “Gradient increases at least quadratically as we increase f(w) above global minima”.
— PL condition implies invexity.
* Invexity is a generalization of convexity, where VVf(w; ) = 0 implies that wy, is a global min.



Question 1: How do | set the step size?

* For gradient descent, there is a trade-off between:
P

% v =
¢ L 'L/'P“Li& rorshat of ,ratl.'mf"

”9‘('(' Size'
* The number ‘L’ is how fast the gradient can change:

Vfw) —=VfW)I| < L|lw - vl|

— The “Lipschitz constant”:

F:W({"Or\ nith o swal L
— Need smaller steps for bigger ‘L.




Question 1: How do | set the step size?

For gradient descent, there is a trade-off between:
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If a;, < 2/L, DGD is guaranteed to decrease the function ‘f’.
If a;, is much smaller than 2/L, DGD will converge more slowly.

— Step size is too small.

If a;, is bigger than 2/L, you might increase the function.
— Step could be too big and “overshoot” region where function decreases.
— But you might get lucky and decrease the function a lot.

* In practice, people use clever step sizes or line searches to make DGD work well.



Comparison of Fixed Step Sizes for DGD

* 25 steps of deterministic gradient descent with different «y,.
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Comparison of Fixed Step Sizes for DGD

* |ncreasing the step size:
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Comparison of Adaptive Step Sizes for DGD

* For DGD you can also use clever step sizes or line-searches.

* Better than fixed steps in practice, do not work for SGD in general.



Question 1b: How do | set the SGD step size?

* For stochastic gradient descent, there is a second trade-off:
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* The number o7 measures the variation in the gradients.
— We have of = ~32, ||[7fi(w*) - 7f (wk) |12,
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— Need smaller steps for bigger 0,3 (but also depends on ||V f(wy)]]).




Question 1b: How do | set the SGD step size?

* For stochastic gradient descent, there is a second trade-off:
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o |f “Vf(Wk)” > a,07, SGD is guaranteed to decrease expected ‘f’.

— As long as we still have a;, < 2/L.
— For DGD, we do not need to worry about this trade-off because o}, = 0.

2
e If apof > “Vf(Wk)” , hoise in SGD makes us increase expected ‘f".

— Step size if too big, causing the noise to interfere with progress.
— Need to decrease step size to re-gain progress, but this slows down convergence.



Question 1b: How do | set the SGD step size?

* For stochastic gradient descent, there is a second trade-off:
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* Optimization: we want Vf(wy,) to converge to 0 as ‘k’ grows.

— So we need to use decreasing step sizes to guarantee continued progress.
e But as we decrease the step size SGD will converge slower.

* Machine learning: we only need Vf (w,,) to close to 0.
— We expect test error to similar for all w, “close enough” to stationary point.
* |f you measure the test error to 2 decimal places, may not need 10 decimal places of accuracy.

— For any “closeness”, we could use a small-enough constant step size o, = «a.
* Guarantees progress until V'f (wy) is “close enough” to zero.
e Butin areas where gradient is small, SGD can behave erratically.



Question 1b: How do | set the SGD step size?

* In practice, SGD algorithm does not have accessto Vf(wy) or ay.

— But we can use thj trade-offs to guide practical choice of step size.
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Question 1b: How do | set the SGD step size?

* In practice, SGD algorithm does not have access to V[ (wy) or gy,.

— But we can use thi trade-offs to guide practical choice of step size.
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Question 2: How do | pick the mini-batch size?

* Instead 1 random example, we often use a mini-batch in SGD:

average s adivil
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— We can often compute gradient of many examples in parallel.
— The mini-batch gives a better approximation of true gradient Vf (wy,).

* With random mini-batches, second part of trade-off changes to:

VEW)I us X B°
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— “With a mini-batch size of 100, effect of noise is divided by 100.”

— “With a mini-batch size of 100, you can use a step size that 100-times larger.”

* Aslong as the step size is still less than 2/L.

n‘,4



Question 2b: How do | grow the mini-batch size?

2 ..
o If “Vf(Wk)” > a0t /|Bk|, mini-batch SGD guarantees progress.
— Again, you can decrease a;, to continue progress as Vf (wy,) goes to 0.
— Or, you can increase the batch size |By | as Vf(wy) goes to 0 (“batching”).

* Growing batch sizes gives convergence with a constant step size.

* The situation is better if you have a finite data set.

— If you sample mini-batch without replacement from ‘n” examples:

[V £(w )W vs.

(V\ ,6/(’) ~ ﬁn/f Com k ra//ac/an
,gl(l n g '

— Drives the effect of 0 to 0 as | By, | approaches ‘n’ (instead of o).

* Growing batches allow using clever step sizes and line-searches.



Comparison of Deterministic, Stochastic, and Hybrid

 Comparing DGD to SGD and a growing batch (“hybrid”) method:
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Question 3: Should | use variance reduction?

e SGD with a growing batch size (“batching”):
— Use an estimate of Vf(w,, ) where g, converges to 0 as wy goes to w,,.
— But batching may lose low iteration cost of SGD.

e Variance-reduced stochastic gradient methods (like SAG and SVRG):

— Design an estimate of Vf (w;,) where g}, converges to 0 as wy, goes to w,.

— But only need 1 random example per iteration.
* So these methods have the low iteration cost of SGD.

* Variance-reduced methods remove second part of trade-off.
— This improves convergence speed a lot for under-parameterized models.
— But variance reduction is not needed for over-parameterized models.



Over-Parameterized Gradient Descent (OGD)

* A model is over-parameterized if it can fit data with training error O.

 How does this affect optimization?
— In this setting, when we minimize ‘f* we also minimize each ‘f/".
— So at a global minimum w, we have V' f;(w,) = 0 for all ‘i".
— And this means that ? = 0 (there is no noise at the minimum).
— So gy, goesto 0 as Vf(wy,) goes to 0.

* | will use term OGD for over-parameterized gradient descent.

* When we apply SGD with a constant step size to an over-parameterized problem.



Over-Parameterized Gradient Descent (OGD)

Since o, goes to 0, OGD is less affected by the second trade-off.
— It converges like DGD with the iteration cost of SGD.
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— No need to decrease step sizes or increase batch sizes.

— Still expect good performance if you are close to being over-parameterized.
 Will not converge but will get close to solution with large steps, since g2 will be small.



Question 3: Should | use variance reduction?

* For over-parameterized models:

— No need for variance reduction, just use OGD.

* Variance-reduce methods might be slower than SGD with constant step size.

* For under-parameterized models:
— Variance reduction may lead to faster convergence.

 Example: generative adversarial networks (GANs).
— GAN loss cannot be driven to zero.
— So variance-reduced SGD can lead to faster convergence.



Question 1c: How do | adjust the step size?

* Could we somehow adjust the SGD step size as we go?
— Accounting for both trade-offs and hoping to get “lucky”?

* Lots of methods have been proposed to do this.
— “Update step size based on some simple statistics”.
— “Do a line-search based on the mini-batch”.
— “Do gradient descent on the step size”.
— Mark being provocative: almost all of these methods are bad.

* Most of these methods have one at least of these problems:
— Introduce a new hyper-parameter that is just as hard to tune.
— Do not converge theoretically (can catastrophically fail).
— Converges theoretically but works badly in practice.
— Need to assume that o, goes to 0.



Question 1c: How do | adjust the step size?

* For under-parameterized problems with fixed batch sizes:

— | have not had good luck getting anything working well across problems.
* And | have tried a lot of things over the years.

— My students say that the recent “coin betting” method works well.
* And is justified theoretically.

* For over-parameterized problems or batching (where g}, goes to 0):
— Can often adapt clever step sizes or line searches designed by DGD.

 Example: for OGD you can use an Armijo backtracking line search.
— “Decrease step size if it makes less progress than a step size like 1/L would.”

— Theory: “Performs as well or better as best fixed step size” (without knowing ‘L).
* And with careful implementation, cost is less in practice than trying out 2 fixed step sizes.



OGD with Armijo Line-Search

* SGD + Armijo outperforms other methods on many benchmarks.
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OGD with Armijo Line-Search

* SGD + Armijo outperforms other methods on many benchmarks.

— Uses different step sizes on different datasets at different times:
SGD+Armijo Step-Sizes

101_

[
o
o

MNIST_MLP
| =@~ CIFAR10_ResNet
—e= CIFAR10 DenseNet
-l CIFAR100 ResNet
-@- CIFAR100 DenseNet
| | [ |
0 100 200
Epochs

Step-Size

(-
o
"

[
o
&




Question 4: What about random shuffling?

* How should we choose the random example?

— Classic SGD theory: must sample i, uniformly from {1,2,...,n}.
* Or with importance sampling from a fixed distribution.

* |n practice, people often use random shuffling:
— Compute a random permutation of the training examples.

— Go through this random permutation in order.
e Guarantees each example is chosen at least once every ‘n’ iterations.

 Empirical evidence that random shuffling converges faster.
— Theory is catching up, showing that it likely is always faster.



Question 5: Should | use importance sampling?

* What about sampling i, from a non-uniform distribution?

 For OGD, importance sampling leads to a faster method:
— Suppose you know the Lipschitz constant L. of each training example.
— OGD converges faster if you bias sampling by the L values.

* “If the gradient of example ‘i’ can change quickly, sample it more often.”

— For classification problems, the “local” L, is small if the examples are correctly classified.

* Normally OGD needs a step size less 2/max(L), this allows step sizes less 2/mean(L,).

* Importance sampling may also help in “low noise” scenarios.

— But if o, is large, we do not expect important sampling to help.



Question 6: Are there faster algorithms?

* We have faster deterministic algorithms than DGD in various setttings:
— For quadratic functions, we can use the heavy-ball method:

W Tw, ’a,‘VF(w,\,) +},<w’(- "V;,-,>

Kk
* Which adds a momentum term to DGD (for some momentum parameter 3, < 1).
— For convex functions, we have Nesterov’s accelerated gradient method(s):

wk«h =W, o(ﬂvr(w"') +f" (Wy - er') X, )g/\' (VF(“’I\') = VF(WA"/ )>

* Which can add a “gradient difference” to the heavy-ball method.
— Nearby a strict local minimum, we can use variations on Newton’s method:

W, = Wi* u([V’F(M )j- |V‘f(w,,)

* Which uses or approximates the second-derivative matrix to converge faster locally.



Gradient Descent vs. Heavy-Ball Method
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Gradient Descent vs. Heavy-Ball Method

* For deterministic quadratics, exist clever ways to set a; and [,.

Heavy-Ball (optimal fixed alpha and beta) Heavy-Ball (optimal per-iteration alpha and beta)
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Question 6: Are there faster algorithms?

* For over-parameterized or growing batch settings:

— ldeas like momentum/Nesterov/Newton can make SGD converge faster.

* These faster methods should still work well in low-noise settings.

* But these methods do not improve the dependence on ay,.
— We do not expect them to converge faster if noise is large.
— These methods can even amplify the effect of the noise.

* SGD may need smaller step sizes if you are using momentum.
* You might need momentum parameter [, to converge to O.



Question 7: Should we just use Adam?

* An extremely popular SGD variant is Adam:
— Combination of several ideas with good properties in specific settings:

* AdaGrad which has appealing properties for online learning.
* Momentum which has appealing properties for deterministic quadratic functions.
 Step sizes that are constant which has appealing properties for low-noise problems.

* The properties of Adam are not well understood.
— Analysis in original Adam paper was wrong.
— There are simple functions where Adam performs terribly.

— But itis difficult to beat Adam on some architectures like transformers.
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Question 7: Should we just use Adam?

Adam is successful because it better handles heavy-tailed noise?
— Nope, Adam still outperforms DGD/SGD on neural nets if you remove the noise.

Adam is successful because we usually apply it to low-noise problems?

— Nope, Adam can still perform badly on over-parameterized problems.
* And it works great on some problems that are under-parameterized.

Adam has more hyper-parameters to search over?
— Nope, many people just use the default parameters.

We co-evolved networks architectures with Adam?

— We have “converged” to architectures that happen to be well-suited for Adam?
* Would explain abnormally good performance of default parameters.

— If so, what are the properties that make it well-suited?

Batch normalization is another common method with missing theory.
— Though there are many recent papers on this topic.



Summary: The Questions vs. Over-Parameterization

Answers to our questions depend on if you are over-parameterized.

Question 1: How do | set the step size?
— Bigger is better, but make sure aj, < 2/Land | |Vf(w)]| |2 < ayof.
— Constant or line-search for over-parameterized, decreasing and slow convergence for under-parameterized.
Question 2: How | pick the mini-batch size?
— Bigger is better, if it does not increasing the iteration cost.
— Growing batch sizes makes under-parameterized look like over-parameterized.
Question 3: Should I use variance reduction?
— No for over-parameterized, yes for under-parameterized.
Question 4: What about random shuffling?
— Very likely a good idea.
Question 5: Should | use importance sampling?
— Yes for over-parameterized, no for under-parameterized.
Question 6: Are there faster algorithms?
— Yes for over-parameterized, no for under-parameterized.
Question 7: Should we just use Adam?
— Maybe, | have more questions than answers here.



