Faster Algorithms for Deep Learning?

Mark Schmidt
University of British Columbia
Motivation: Faster Deep Learning?

- 2006: PhD student Mark goes to CIFAR “deep learning” workshop.

- People seem very excited about this.
 - But they are using the (slow) “SGD” algorithm from 1952.
 - “I will have a huge impact if I can develop a faster algorithm”.
Stochastic Gradient Descent (SGD)

• For most ML models, we fit parameters by minimizing an expectation:

\[\min_x \{ E[f(x)] \} \]

 – Function ‘f’ measures how well we fit a training example.
 – Fitting a least squares, logistic regression, neural networks, and so on.

• Among most common algorithms is stochastic gradient descent (SGD):

\[x^{k+1} = x^k - \alpha_k g(x^k) \]

 – The iterate \(x^k \) is our guess of the parameters on iteration ‘k’.
 – The step size \(\alpha_k \) is how far we move on iteration ‘k’.
 – The direction \(g(x_k) \) is an unbiased estimate of the gradient of the expectation.

 • Usually, you get this from taking the gradient of a randomly-chosen example or mini-batch.
Stochastic Gradient Descent (SGD)

- Deterministic gradient descent vs. stochastic gradient descent:

- Advantage of SGD: iteration cost of $O(1)$ in number of examples.
 - If you have one billion examples, it’s 1 billion times faster than gradient descent.
 - Variations of it (often) work for training deep neural networks.

- Disadvantages due to the variance in the gradient approximation:
 - May need a huge number of iterations.
 - May be sensitive to the exact choice of step size.
 - Not obvious when to stop.
Digression: Convex Functions

• Classic work on this problem focuses on convex functions:
 – Where local optima are global optima.

• The (possibly-flawed) reasoning for focusing on convex objectives:
 – It’s easier to prove things!
 – “If it doesn’t work for convex, it won’t work for non-convex.”
 – Deep learning objectives are convex near solutions.
 – We did not have ways to analyze SGD for non-convex functions at the time.
Impossibility of Faster Methods

• How many iterations of SGD do we need to minimize a convex function?

• Convergence rate result from (basically) the 1950s:
 – Assume function is “strongly-smooth and strongly-convex”.
 – Assume variance of the gradient estimates is bounded.
 – To reach an accuracy of ε, SGD needs $O(1/\varepsilon)$ iterations.

• Deterministic gradient descent only needs $O(\log(1/\varepsilon))$.
 – “Exponential” vs. “polynomial” number of iterations.

• No method based on unbiased gradients can be faster than $O(1/\varepsilon)$.
 – Even if you have a one-dimensional problem (under the assumptions above).
 – Second-derivatives or “acceleration” do not help (no faster “stochastic Newton”).
 • The lower bound comes from the variance, not the “condition number”.

The Assumptions

• In order to go faster than $O(1/\varepsilon)$, we need stronger assumptions.
 – Otherwise, the lower bound says it’s impossible.

• We explored two possible stronger assumptions to get $O(\log(1/\varepsilon))$:
 1. Assume you only have a finite training set.
 • Usually don’t have infinite data, so design an algorithm that exploits this.

 2. Cheat by finding stronger assumptions where plain SGD would go fast.
 • Could explain practical success, and might suggest new methods.
Finite Data Assumption: Deterministic vs. Stochastic

- Gradient descent makes **consistent progress** with **slow iterations**.
- Stochastic gradient has **fast iterations** but **decreasing progress**.

![Graph showing deterministic and stochastic progress over time](image)
Finite Data Assumption: Deterministic vs. Stochastic

- You can design hybrids (initialize with SGD, or increase batch sizes).
- Variance reduction methods can be even faster than hybrids.
Variance-Reduction: SAG and SVRG

- **Variance reduction** methods for finite training sets:
 - Method with cost of stochastic gradient, progress of full gradient.
 - $O(\log(1/\epsilon))$ iterations to reach accuracy ϵ with $O(1)$ iteration cost.
 - Key idea: design an estimator of the gradient whose variance goes to zero.

- First general method in 2012: **stochastic average gradient (SAG)**.
 - Keeps a memory of previous gradient value for each example.

- Memory-free method: **stochastic variance-reduced gradient (SVRG)**:
 \[
 x_{k+1} = x_k - \alpha_k \left(\nabla f_i(x_k) - \nabla f_i(\tilde{x}_k) + \nabla f(\tilde{x}_k) \right)
 \]
 - Regular SGD
 - "control variate" (mean of 0)
 - The reference point \tilde{x}_k is typically updated every $O(n)$ iterations.
Variance-Reduction: Practical Performance

- Variance reduction has led to **faster methods in many settings**: Least squares, logistic regression, PCA, cryo-EM, conditional random fields, and so on.
Variance Reduction: 8 Years Later.

• Variance reduction has been taken in a wide variety of directions:
 – Memory-free SAG in some settings (like linear and graphical models).
 – Variants giving faster algorithms for some non-smooth problems.
 – Variants giving faster algorithms for some non-convex problems.
 • Including PCA and problems satisfying the “PL inequality”.
 – Momentum-like variants that achieve acceleration.
 – Improved test error bounds compared to SGD.
 – Parallel and distributed versions.
 – SAG won 2018 “Lagrange Prize in Continuous Optimization”.
 – Does not seem to help with deep learning.
Back to the Assumptions

• In order to go faster than $O(1/\varepsilon)$, we need stronger assumptions.

• We explored two possible stronger assumptions to go faster:
 1. Assume you only have a finite training set (SAG and SVRG).
 • Successful for a lot of problems, but not for deep learning.
 2. Cheat by finding stronger assumptions where plain SGD would go fast.
 • Could explain practical success, and might suggest new methods.
Strong Growth Condition (SGC)

• What conditions would we need for plain SGD to converge fast?
• Consider the strong growth condition (SGC):

\[\mathbb{E} \left[\| g(x^k) \|^2 \right] \leq \rho \| \nabla f(x^k) \|^2 \]

 – Used by Tseng and Solodov in the 90s to analyze SGD on neural networks.
 • Under SGC, they showed that SGD converges with a constant step size.
 • This is possible because it implies variance goes to zero at a solution.

• The SGC is a very-strong assumption:
 – Assumes that gradient is zero at the solution for every training example:

\[\nabla f(x^k) = 0 \implies \text{every } g(x^k) = 0 \]
 – Model is complicated enough to “interpolate” (fit exactly) the data.
Strong Growth Condition (SGC)

• Interpolation changes behaviour of gradients at solution:

\[
\begin{align*}
\text{Gradients at solution (bounded variance)} & \quad \text{Gradients at solution (SGC)} \\
\{ \text{point in different directions to cancel out} \} & \quad \Rightarrow \text{all zero} \rightarrow \text{no variance}
\end{align*}
\]

• Under SGC, don’t need step size to go to zero to counter variance.
Strong Growth Condition (SGC)

- SGD with constant step-size under SGC requires $O(\log(1/\epsilon))$ iterations.
 - In this setting there is no need to use variance reduction (it would be slower).
 - 2013: we wrote a 5-page paper showing this in 1 day and put it on arXiv.

- Moved on with life, "this assumption is clearly ridiculous".

- You would probably excessively overfit if this was true anyways?
Interpolation and Deep Learning?

• 2014: Adam optimizer.
 – Became wildly-popular for training deep models.
 • Poor performance for optimizing some convex functions.
 • Several groups observed that deep networks can drive error to 0.
 – Without excessive overfitting.
 – Maybe interpolation isn’t such a ridiculous assumption?

https://www.neyshabur.net/papers/inductive_bias_poster.pdf
Over-Parameterization and Interpolation

• Ma, Bassily, and Belkin [ICML, 2018]:
 – Show that SGD under interpolation has linear convergence rate.
 – Provided theoretical justification (and limits) for “linear scaling rule”.
 – Discussed connection between interpolation and over-parameterization.

• “Over-parameterization”:
 – You have so many parameters that you can drive the loss to 0.
 – Also true for linear models with a sufficiently-expressive basis.
 • You can make it true by making model more complicated (more features = fast SGD).
 • Several groups explored implicit regularization of SGD (may not ridiculously overfit).
Back to the SGC?

• Connection to 2013: assumptions of Ma et al. imply the SGC.
 – Maybe the SGC assumption is relevant in applications?

• Does SGC/interpolation explain SGD behaviour for deep learning?
 – Would explain why variance reduction does not help.
 – Would explain success of Adam and constant step size regimes.

• Suggests opportunities to develop better deep learning algorithms.
 – We have “fast”, “faster”, “painless”, and “furious” algorithms under SGC.
“Fast” SGD under the SGC (AI/Stats 2019)

• Previous analyses under the SGC assumed convexity.
• We showed the following non-convex result for plain-old SGD:

Theorem 3 (**Non-Convex**). Under L-smoothness, if f satisfies SGC with constant ρ, then SGD with a constant step-size $\eta = \frac{1}{\rho L}$ attains the following convergence rate:

$$\min_{i=0,1,...,k-1} E \left[\| \nabla f(w_i) \|^2 \right] \leq \left(\frac{2\rho L}{k} \right) [f(w_0) - f^*].$$

 – We analyze norm of gradient due to non-convexity.
• This is faster than all previous general non-convex stochastic results.
 – Even for fancier methods.
 – Gives justification for things like constant step-size regimes and Adam.
 – Bassily et al. [2018] later gave a result under “PL inequality”.

 • Much faster but this assumption is much stronger (implies all minima are global minima).
“Faster” SGD under the SGC (AI/Stats 2019)

• Sutskever, Martens, Dahl, Hinton [2013]:
 – Nesterov acceleration improves practical performance in some settings.
 – Acceleration is closely-related to momentum, which also helps in practice.
• Existing stochastic analyses only achieved partial acceleration.

<table>
<thead>
<tr>
<th>Method</th>
<th>Regular</th>
<th>Accelerated</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Deterministic</td>
<td>$\tilde{O}(n\kappa)$</td>
<td>$\tilde{O}(n\sqrt{\kappa})$</td>
<td>Unconditional acceleration</td>
</tr>
<tr>
<td>SGD + (var < σ^2)</td>
<td>$O\left(\frac{\sigma^2}{\epsilon} + \frac{\kappa}{\epsilon}\right)$</td>
<td>$O\left(\frac{\sigma^2}{\epsilon} + \sqrt{\frac{\kappa}{\epsilon}}\right)$</td>
<td>Faster if $\kappa > \sigma^2$</td>
</tr>
<tr>
<td>Variance Reduction</td>
<td>$\tilde{O}(n + \kappa)$</td>
<td>$\tilde{O}(n + \sqrt{n\kappa})$</td>
<td>Faster if $\kappa > n$</td>
</tr>
<tr>
<td>SGC + SGC</td>
<td>$\tilde{O}(\kappa)$</td>
<td>$\tilde{O}(\sqrt{\kappa})$</td>
<td>Unconditional acceleration</td>
</tr>
</tbody>
</table>

• Under SGC we show full acceleration (convex, appropriate parameters).
 – Special cases also shown by Liu and Belkin [2018], Jain et al. [2018]
“Painless” SGD under the SGC (NeurIPS 2019)

• Previous SGC/interpolation results relied on particular step-sizes.
 – Depending on values we don’t know, like eigenvalues of Hessian.
• Existing methods to set step-size don’t guarantee fast convergence.
 – Meta-learning, heuristics, adaptive, online learning, prob line-search.
• Under SGC, we showed you can can set the step-size as you go.
• Achieved (basically) optimal rate in a variety of settings:

\[E \left[\|w_T - w^*\|^2 \right] \leq \left(\max \left\{ \left(1 - \frac{\mu}{L} \right), (1 - \eta_{\text{max}} \mu) \right\} \right)^T \|w_0 - w^*\|^2. \]

\[\min_{k=0, \ldots, T-1} \mathbb{E} \|\nabla f(w_k)\|^2 \leq \frac{\max \left\{ \frac{L_{\text{max}}}{1 - \rho \cdot L_{\text{max}}}, 2 \right\} + 1}{T} \left[f(w_0) - f^* \right]. \]

\[E \left[f(\bar{w}_T) - f(w^*) \right] \leq \frac{c \cdot \max \left\{ \frac{L_{\text{max}}}{2 (1-c)}, \frac{1}{\eta_{\text{max}}} \right\}}{(2c - 1) T} \|w_0 - w^*\|^2. \]
“Painless” SGD under the SGC (NeurIPS 2019)

• Key idea: Armijo line-search on the batch.
 – “Backtrack if you don’t improve cost on the batch relative to the norm of the batch’s gradient.”

  ```
  Algorithm 1 SGD+Armijo(f, w₀, ηmax, b, c, β, γ, opt)
  1: for k = 1, . . . , T do
  2:     i_k ← sample mini-batch of size b
  3:     η ← reset(η, ηmax, γ, b, k, opt)/β
  4:     repeat
  5:         η ← β · η
  6:         w_k' ← w_k - η∇f_i_k(w_k)
  7:         until f_i_k(w_k') ≤ f_i_k(w_k) - c · η ∥∇f_i_k(w_k)∥^2
  8:     w_{k+1} ← w_{k'}
  9: end for
10: return w_{k+1}
  ```

• Backtracking guarantees steps are “not too big”.
• With appropriate initialization, guarantees steps are “not too small”.
 – Theory says that it’s at least as good as the best constant step-size.
• Requires an extra forward pass per iteration, and forward pass for each backtrack.
• We proposed a procedure to propose trial step sizes that works well in practice:
 – Slowly increases the step size, but median number of backtracking steps per iteration is 0.
“Painless” SGD under the SGC (NeurIPS 2019)

• We did a variety of experiments, including training CNNs on standard problems.
 — Better in practice than any fixed step size, adaptive methods, alternative adaptive step sizes.
Discussion: Sensitivity to Assumptions

• To ease some of your anxiety/skepticism:
 – You don’t need to run it to the point of interpolating the data, it just needs to be possible.
 – Results can be modified to handle case of being “close” to interpolation.
 • You get an extra term depending on your step-size and how “close” you are.
 – We ran synthetic experiments where we controlled the degree of over-parameterization:
 • If it’s over-parameterized, the stochastic line search works great.
 • If it’s close to being over-parameterized, it still works really well.
 • If it’s far from being over-parameterized, it catastrophically fails.
 – Another group [Berrada, Zisserman, Pawan Kumar] proposed a similar method a few days later.
 – We’ve compared to a wide variety of existing methods to set the step size.

• To add some anxiety/skepticism:
 – My students said all the neural network experiments were done with batch norm.
 – They had more difficulty getting it to work for LSTMs (“first thing we tried” didn’t work here).
 – Some of the line-search results have extra “sneaky” assumptions I would like to remove.
“Furious” SGD under the SGC (AI/Stats 2020)

• The reason “stochastic Newton” can’t improve rate is the variance.
• SGC gets rid of the variance, so stochastic Newton makes sense.
• Under SGC:
 – Stochastic Newton gets “linear” convergence with constant batch size.
 • Previous works required finite-sum assumption or exponentially-growing batch size.
 – Stochastic Newton gets “quadratic” with exponentially-growing batch.
 • Previous works required faster-than-exponential growing batch size for “superlinear”.

• The paper gives a variety of other results and experiments.
 – Self-concordant analysis, L-BFGS analysis, Hessian-free implementation.
Take-Home Messages

• For under-parameterized models, use variance reduction.
• For over-parameterized models, don’t use variance reduction.

• New algorithms and/or analyses for over-parameterized models:
 – “Fast” non-convex convergence rates for plain SGD.
 – “Faster” SGD using acceleration.
 – “Painless” SGD using line-search.
 – “Furious” SGD using second-order information.

• Try out the line-search, we want to make it a black box code.
 – It will helpful to know cases where it does and doesn’t work.
• Variance-reduction might still be relevant for deep learning: