Faster Algorithms for Deep Learning?

Mark Schmidt
University of British Columbia

Motivation: Faster Deep Learning?

e 2006: PhD student Mark goes to CIFAR “deep learning” workshop.

H'

0 [N [0y LE[wVIN (o)
SIS NSE
NESANIEAEN

STORNA L 6B
BOSNGNENSS

BREERIENES

N

* People seem very excited about this.

=

— But they are using the (slow) “SGD” algorithm from 1952.
— “I'will have a huge impact if | can develop a faster algorithm”.

Stochastic Gradient Descent (SGD)

* For most ML models, we fit parameters by minimizing an expectation:

" § ELF()

— Function ‘f" measures how well we fit a training example.
— Fitting a least squares, logistic regression, neural networks, and so on.

* Among most common algorithms is stochastic gradient descent (SGD):

k+' - % (k)

= X T & g\x

— The iterate x* is our guess of the parameters on iteration ‘k’.
— The step size o, is how far we move on iteration k.

— The direction g(x,) is an unbiased estimate of the gradient of the expectation.
* Usually, you get this from taking the gradient of a randomly-chosen example or mini-batch.

Stochastic Gradient Descent (SGD)

* Deterministic gradient descent vs. stochastic gradient descent:

= =

* Advantage of SGD: iteration cost of O(1) in number of examples.
— If you have one billion examples, it’s 1 billion times faster than gradient descent.
— Variations of it (often) work for training deep neural networks.

* Disadvantages due to the variance in the gradient approximation:
— May need a huge number of iterations.
— May be sensitive to the exact choice of step size.
— Not obvious when to stop.

Digression: Convex Functions

e Classic work on this problem focuses on convex functlons
— Where local optima are global optima. \ T

* The (possibly-flawed) reasoning for focusing on convex objectives:
— It’s easier to prove things!
— “If it doesn’t work for convex, it won’t work for non-convex.”
— Deep learning objectives are convex near solutions.
— We did not have ways to analyze SGD for non-convex functions at the time.

Impossibility of Faster Methods

How many iterations of SGD do we need to minimize a convex function?

Convergence rate result from (basically) the 1950s:
— Assume function is “strongly-smooth and strongly-convex”.
— Assume variance of the gradient estimates is bounded.
— To reach an accuracy of €, SGD needs O(1/¢€) iterations.

Deterministic gradient descent only needs O(log(1/¢)).
— “Exponential” vs. “polynomial” number of iterations.

No method based on unbiased gradients can be faster than O(1/¢).

— Even if you have a one-dimensional problem (under the assumptions above).

— Second-derivatives or “acceleration” do not help (no faster “stochastic Newton”).
* The lower bound comes from the variance, not the “condition number”.

The Assumptions

* |n order to go faster than O(1/¢), we need stronger assumptions.
— Otherwise, the lower bound says it’s impossible.

* We explored two possible stronger assumptions to get O(log(1/¢)):
1. Assume you only have a finite training set.

e Usually don’t have infinite data, so design an algorithm that exploits this.

2. Cheat by finding stronger assumptions where plain SGD would go fast.

* Could explain practical success, and might suggest new methods.

Finite Data Assumption: Deterministic vs. Stochastic

A |

) AT—S) T e '
%.; a me o ya 7‘#”%9‘\ al ' equrltj
Q

L

e .

© L stochastic

S

N DL
% deterministic
Fe—

i

fime
* Gradient descent makes consistent progress with slow iterations.
* Stochastic gradient has fast iterations but decreasing progress.

Finite Data Assumption: Deterministic vs

-

o)

S

NS

")

L .

& stochastic

S
N— . . .

o0 deterministic
| hvbrid -

new
. —
trime

. Stochastic

* You can design hybrids (initialize with SGD, or increase batch sizes).
e Variance reduction methods can be even faster than hybrids.

Variance-Reduction: SAG and SVRG

e Variance reduction methods for finite training sets:

— Method with cost of stochastic gradient, progress of full gradient.
* O(log(1/g)) iterations to reach accuracy € with O(1) iteration cost.

— Key idea: design an estimator of the gradient whose variance goes to zero.

* First general method in 2012: stochastic average gradient (SAG).
— Keeps a memory of previous gradient value for each example.

* Memory-free method: stochastic variance-reduced gradient (SVRG):
K1

(= 6= (T < Th 5) + ()

N—

W
re lJV\lar YCD ‘dnha variate (m-"m of 0)
* The reference point X\ is typically updated every O(n) iterations.

Objective minus Optimal

Variance-Reduction: Practical Performance

e Variance reduction has led to faster methods in many settings:

e Least squares, logistic regression, PCA, cryo-EM, conditional random fields, and so on.

I I | | I I
Pegasos
5 Pegasos
4
£
8
102] ASG %,
% | €10 - -
843 :
o
=
;
10° - -9
% O 107 —
107 | ! T 1 107 | T 1 1

0 20 40 60 80 100 0 20 40 60 80 100

Variance Reduction: 8 Years Later.

e Variance reduction has been taken in a wide variety of directions:
— Memory-free SAG in some settings (like linear and graphical models).
— Variants giving faster algorithms for some non-smooth problems.

— Variants giving faster algorithms for some non-convex problemes.
* Including PCA and problems satisfying the “PL inequality”.

— Momentum-like variants that achieve acceleration.

— Improved test error bounds compared to SGD. epux Ty
. . . Q.
— Parallel and distributed versions. !‘b . ¢
2018
— SAG won 2018 “Lagrange Prize in Continuous Optimization”.

SocelyandSocety for Industrial
— Does not seem to help with deep learning. - /

Back to the Assumptions

* |n order to go faster than O(1/¢), we need stronger assumptions.

* We explored two possible stronger assumptions to go faster:
1. Assume you only have a finite training set (SAG and SVRG).

* Successful for a lot of problems, but not for deep learning.

2. Cheat by finding stronger assumptions where plain SGD would go fast.

* Could explain practical success, and might suggest new methods.

Strong Growth Condition (SGC)

* What conditions would we need for plain SGD to converge fast?
* Consider the strong growth condition (SGC):

[Ng6 T < plvFen)?

— Used by Tseng and Solodov in the 90s to analyze SGD on neural networks.
e Under SGC, they showed that SGD converges with a constant step size.
* This is possible because it implies variance goes to zero at a solution.

* The SGCis a very-strong assumption:
— Assumes that gradient is zero at the solution for every training example:

VF(KI():O =7 C"v-{ry 9(;(”):@

— Model is complicated enough to “interpolate” (fit exactly) the data.

Strong Growth Condition (SGC)

* Interpolation changes behaviour of gradients at solution:

Gfatl‘-m{s q?l' s [ulian (bovm:‘vc‘ \/o/lcmrq> Gqu,’M" a"‘ SG'M"YM (gé'C)
rainf in di e il » Z all Zero =7 varimie
(‘irlc‘/’w\f fo (oma(/
0\4."

 Under SGC, don’t need step size to go to zero to counter variance.

Strong Growth Condition (SGC)

* SGD with constant step-size under SGC requires O(log(1/eps)) iterations.
— In this setting there is no need to use variance reduction (it would be slower).
— 2013: we wrote a 5-page paper showing this in 1 day and put in on arXiv.

— You would probably excessively overfit if this was true anyways?

Interpolation and Deep Learning?

e 2014: Adam optimizer.

— Became wildly-popular for training deep models.

* Poor performance for optimizing some convex functions.
o P22 111122722222222222222222 111112222272222222°2111122227?2?

* Several groups observed that deep networks can drive error to 0.

MNIST CIFAR-10

4 8 16 32 64 128 256 512 1K 2K 4K 4 8 16 32 64 128 256 512 1K 2K 4K
Hidden Units # Hidden Units

— Without excessive overfitting.
— Maybe interpolation isn’t such a ridiculous assumption?

Over-Parameterization and Interpolation

* Ma, Bassily, and Belkin [ICML, 2018]:

— Show that SGD under interpolation has linear convergence rate.
— Provided theoretical justification (and limits) for “linear scaling rule”.
— Discussed connection between interpolation and over-parameterization.

 “Over-parameterization”:
— You have so many parameters that you can drive the loss to O.
— True for many modern deep neural networks.
— Also true for linear models with a sufficiently-expressive basis.

* You can make it true by making model more complicated (more features = fast SGD).
» Several groups explored implicit regularization of SGD (may not ridiculously ovefit).

Back to the SGC?

* Connection to 2013: assumptions of Ma et al. imply the SGC.
— Maybe the SGC assumption is relevant in applications?

* Does SGC/interpolation explain SGD behaviour for deep learning?
— Would explain why variance reduction does not help.
— Would explain success of Adam and constant step size regimes.

* Suggests opportunities to develop better deep learning algorithms.

A {]

— We have “fast”, “faster”, “painless”, and “furious” algorithms under SGC.

“Fast” SGD under the SGC (Al/Stats 2019)

* Previous analyses under the SGC assumed convexity.
* We showed the following non-convex result for plain-old SGD:

Theorem 3 (Non-Convex). Under L-smoothness, if f

satisfies SGC with constant p, then SGD with a con-

stant step-size 11 = ,:%L attains the following conver-

gence rate:

_omin E[I197w)?] < (28] [7twn) - £

— We analyze norm of gradient due to non-convexity.
* This is faster than all previous general non-convex stochastic results.
— Even for fancier methods.

— Gives justification for things like constant step-size regimes and Adam.

— Bassily et al. [2018] later gave a result under “PL inequality”.
* Much faster but this assumption is much stronger (implies all minima are global minima).

“Faster” SGD under the SGC (Al/Stats 2019) g

e Sutskever, Martens, Dahl, Hinton [2013]:

— Nesterov acceleration improves practical performance in some settings.
— Acceleration is closely-related to momentum, which also helps in practice.

e Existing stochastic analyses only achieved partial acceleration.

Deterministic 0 (nk) 0 (n/k) Unconditional acceleration
SGD + (var < ¢?) g’ Kk o’ k\ Fasterifx > ¢g?
O|—+- o|\—+ |-
€ € € €
Variance Reduction O(n + k) O(n + Jnk) Fasterifx>n
SGC + SGC 0(x) 0(VK) Unconditional acceleration

* Under SGC we show full acceleration (convex, appropriate parameters).
— Special cases also shown by Liu and Belkin [2018], Jain et al. [2018]

“Painless” SGD under the SGC (NeurIPS 2019)

* Previous SGC/interpolation results relied on particular step-sizes.

— Depending on values we don’t know, like eigenvalues of Hessian.

e Existing methods to set step-size don’t guarantee fast convergence.

— Meta-learning, heuristics, adaptive, online learning, prob line-search.

* Under SGC, we showed you can can set the step-size as you go.

* Achieved (basically) optimal rate in a variety of settings:

Theorem 1 (Strongly-Convex). Assuming interpolation, L-smoothness and ju strong-convexity of f, Theorem 3 (Non-Convex). Assuming the SGC with constant p and under L;-smoothness of f;’s,
and convexity of the f;, SGD with Armijo line-search with ¢ = 1/2 in Equation 1 achieves the rate: SGD with A rmijo line-search in Equation 1 with ¢ = p Lya and setting nuq. = 1 achieves the rate:

: T ;
E [||u'r/- — 11**|]2] < (max {(] - ,[—1> (1 = Dax /1)}) ||wo — u'*Hz.

L"ML\'
Lo, 2} +1

max
kzomh}[_1 E ||Vf('u,';c)||2 = { T [f(wo) — f*].

.....

Theorem 2 (Convex). Assuming interpolation and under L;-smoothness and convexity of f;’s, SGD
with Armijo line-search for all ¢ > 1/2 in Equation 1 and iterate averaging achieves the rate:

vy aw L O
¢ - max {2 02 }
(2¢—1)T

E[f(wr) — f(w*)] <

|wo — w*||?.

“Painless” SGD under the SGC (NeurIPS 2019)

 Key idea: Armijo line-search on the batch.
— “Backtrack if you don’t improve cost on the batch relative to the norm of the batch’s gradient.”

Algorithm 1 SGD+Armijo(f, wo, Nmax. b ¢, 3, 7, opt)

I: fork=1,...,T do

2: i) <— sample mini-batch of size b

3 n < reset(n, Pmax, Y, b, k, opt) /3

-+ repeat

5: n<pB-n

6: wy, < wi — NV fir(wg)

7o until fi(wp) < fix(we) — ¢ ||V far(wi) |

8: Wh41 < 71!;“
9: end for
10: return w41

e Backtracking guarantees steps are “not too big”.

* With appropriate initialization, guarantees steps are “not too smal
— Theory says that it’s at least as good as the best constant step-size.

* Requires an extra forward pass per iteration, and forward pass for each backtrack.

 We proposed a procedure to propose trial step sizes that works well in practice:
— Slowly increases the step size, but median number of backtracking steps per iteration is O.

|”

“Painless” SGD under the SGC (NeurIPS 2019)

 We did a variety of experiments, including training CNNs on standard problems.
— Better in practice than any fixed step size, adaptive methods, alternative adaptive step sizes.

CIFAR10 ResNet CIFAR100 ResNet - CIFAR100 DenseNet

94
741 M*""""*"" J
721
o Reh #
701
681
20 2 4 6
lterations led Ilterations led

Ilterations led

- SGD + Goldstein —4— Coin-Betting AdaBound —8— Adam —4— Polyak + Armijo —&— SGD + Armijo —e— Tuned 5GD

Discussion: Sensitivity to Assumptions

To ease some of your anxiety/skepticism:
— You don’t need to run it to the point of interpolating the data, it just needs to be possible.
— Results can be modified to handle case of being “close” to interpolation.

* You get an extra term depending on your step-size and how “close” you are.

— We ran synthetic experiments where we controlled the degree of over-parameterization:

* |fit’'s over-parameterized, the stochastic line search works great.

* Ifit’s close to being over-parameterized, it still works really well.
* Ifit’s far from being over-parameterized, it catastrophically fails.

— Another group [Berrada, Zisserman, Pawan Kumar] proposed a similar method a few days later.
— We've compared to a wide variety of existing methods to set the step size.

To add some anxiety/skepticism:
— My students said all the neural network experiments were done with batch norm.
— They had more difficulty getting it to work for LSTMs (“first thing we tried” didn’t work here).
— Some of the line-search results have extra “sneaky” assumptions | would like to remove.

“Furious” SGD under the SGC (Al/Stats 2020)

The reason “stochastic Newton” can’t improve rate is the variance.
SGC gets rid of the variance, so stochastic Newton makes sense.
Under SGC:

— Stochastic Newton gets “linear” convergence with constant batch size.

* Previous works required fininte-sum assumption or exponentially-growing batch size.

— Stochastic Newton gets “quadratic” with exponentially-growing batch.

* Previous works required faster-than-exponential growing batch size for “superlinear”.

The paper gives a variety of other results and experiments.
— Self-concordant analysis, L-BFGS analysis, Hessian-free implementation.

Take-Home Messages

For under-parameterized models, use variance reduction.
For over-parameterized models, don’t use variance reduction.

New algorithms and/or analyses for over-parameterized models:
— “Fast” non-convex convergence rates for plain SGD.

— “Faster” SGD using acceleration.

— “Painless” SGD using line-search.

— “Furious” SGD using second-order information.

Try out the line-search, we want to make it a black box code.
— It will helpful to know cases where it does and doesn’t work.

Variance-reduction might still be relevant for deep learning:

— Reducing Noise in GAN Training with Variance Reduced Extragradient. T. Chavdarova, G.
Gidel, F. Fleuret, S. Lacoste-Julien [NeurlPS, 2019].

