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Abstract

Expectation maximization (EM) is the default
algorithm for fitting probabilistic models with
missing or latent variables, yet we lack a full
understanding of its non-asymptotic conver-
gence properties. Previous works show results
along the lines of “EM converges at least as
fast as gradient descent” by assuming the con-
ditions for the convergence of gradient descent
apply to EM. This approach is not only loose,
in that it does not capture that EM can make
more progress than a gradient step, but the as-
sumptions fail to hold for textbook examples
of EM like Gaussian mixtures. In this work
we first show that for the common setting
of exponential family distributions, viewing
EM as a mirror descent algorithm leads to
convergence rates in Kullback-Leibler (KL)
divergence. Then, we show how the KL di-
vergence is related to first-order stationarity
via Bregman divergences. In contrast to pre-
vious works, the analysis is invariant to the
choice of parametrization and holds with min-
imal assumptions. We also show applications
of these ideas to local linear (and superlin-
ear) convergence rates, generalized EM, and
non-exponential family distributions.

1 INTRODUCTION

Expectation maximization (EM) is the most common
approach to fitting probabilistic models with missing
data or latent variables. EM was formalized by Demp-
ster et al. (1977), who discussed a wide variety of earlier
works that independently discovered the algorithm and
domains where EM is used. They already listed multi-
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Figure 1: The surrogate optimized by EM is a tighter
bound on the objective L than the the quadratic bound
implied by smoothness, optimized by gradient descent.

variate sampling, normal linear models, finite mixtures,
variance components, hyperparameter estimation, iter-
atively reweighted least squares, and factor analysis. To
this day, EM continues to be used for these applications
and others, like semi-supervised learning (Ghahramani
and Jordan, 1994), hidden Markov models (Rabiner,
1989), continuous mixtures (Caron and Doucet, 2008),
mixture of experts (Jordan and Xu, 1995), image recon-
struction (Figueiredo and Nowak, 2003), and graphical
models (Lauritzen, 1995). The many applications of
EM have made the work of Dempster et al. one of the
most influential in the field.

Since the development of EM and subsequent clarifi-
cations on the necessary conditions for convergence
(Boyles, 1983; Wu, 1983), a large number of works
have shown convergence results for EM and its many
extensions, leading to a variety of insights about the
algorithm, such as the effect of the ratio of missing in-
formation (Xu and Jordan, 1996; Ma et al., 2000) and
the sample size (Wang et al., 2015; Yi and Caramanis,
2015; Daskalakis et al., 2017; Balakrishnan et al., 2017).
However, existing results on the global, non-asymptotic
convergence of EM rely on proof techniques developed
for gradient descent on smooth functions, which rely on
quadratic upper-bounds on the objective.1 Informally,
this approach argues that the maximization step of
the surrogate constructed by EM does at least as well
as gradient descent on a quadratic surrogate with a
constant step-size, as illustrated in Figure 1.

1As EM is a maximization algorithm, we should say
“gradient ascent” and “lower-bound”. But we use the lan-
guage of minimization to make connections to ideas from
the optimization literature more explicit.
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Learning with Missing Values

Missing values are very common in real datasets.
Models/data often have unobserved/hidden/latent values.

For example, we may want to fit a Gaussian to a dataset like this:

X =


0.3 ? 5 −1
−0.2 10 1 +1
0.1 ? 2 −1
0.1 22 0 ?

 .
One of the most common algorithms for this setting is EM.

“Expectation maximization”.
Applies when problem is “easy” to solve with no missing values.
Uses probabilistic “soft” assignments to missing variables.
For many problems it leads to simple closed-form updates.



Expectation Maximization: Optimization with MAR Variables

EM was independently invented for a variety of different problems.

Paper giving general form is among most-cited across all fields:

Some common applications:
Mixture of Gaussians.
Multivariate student t.
Hidden Markov models.
Factor analysis.
Semi-supervised learning.
Graphical models with missing data.

In many problems, we introduce missing variables to use EM.



MLE from Incomplete Data via the EM Algorithm
(Exponential Families)

Maximum likelihood with observed data x and missing z :

L(θ) = − log p(x | θ) = − log

average over missing data︷ ︸︸ ︷∫
p(x , z | θ) dz

Most classic EM applications have complete data in exponential family,

p(x , z | θ) ∝ exp(〈T (x , z), θ〉 − A(θ))

E-step: Compute the expected sufficient statistics

µ̄t = Ez∼p(z | x ,θt)[T (x , z)]

M-step: Maximum likelihood/Moment matching

Find θt+1 such that Ex ,z∼p(x ,z | θt+1)[T (x , z)] = µ̄t

Increases likelihood, parameterization invariant, converges to stationary*.



Example: Mixture of Gaussians

Application: modeling multi-modal data with mixture of Gaussians

We introduce missing variable for each sample (“which Gaussian?”).

Yields an intuitive EM update:
E-step: compute pr(“example comes from each Gaussian”).
M-step: update cluster parameters using examples “in” cluster.



Convergence Rate of EM

Is EM a good optimization algorithm?
How fast does it converge?

Previous results:
Asymptotically, EM has linear convergence rate.

No dependence on parameterization.
Instead depends on “amount of missing information”.

But we may never reach asymptotic regime.

Non-asymptotically, “at least as a fast as gradient descent”.
Dependent on parameterization.

Misses dependence on “amount of missing information”.
In practice EM is faster than gradient descent.

This work: parameterization-invariant non-asymptotic EM analysis.
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“EM is at least as fast as GD”
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EM is much faster. What are we missing?



Previous work

L

θ

L

EM
θ

Gradient descent

L

EM
θ

L(θ) ≤ L(θt) + 〈∇L(θt), θ − θt〉+
L
2‖θ − θt‖2

=⇒ min
t≤T

1
2‖∇L(θt)‖2 ≤ L

T (L(θ0)− L(θ∗))

7 depends on the parametrization
7 unknown constant, L =∞?



Most models are not smooth

fitting N (µ, σ2)
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Variance can not be upper-bounded by a quadratic



EM for EFs is Mirror Descent

Gradient descent with step-size α:

θt+1 = θt − α∇L(θt)

∈ arg min
θ
L(θt) + 〈∇L(θt), θ − θt〉+

1
α

1
2‖θ − θt‖2

Converges if L is (1/α)-smooth.

Mirror descent is a generalization allowing a Bregman divergences:

θt+1 ∈ arg min
θ
L(θt) + 〈∇L(θt), θ − θt〉+

1
α

Dh(θ, θt)

Converges if L is (1/α)-smooth relative to a reference function h.

We show EM for EFs is mirror descent (1-smooth relative to A):

θt+1 = arg min
θ
L(θt) + 〈∇L(θt), θ − θt〉+ DA(θ, θt)︸ ︷︷ ︸

KL[pθt ‖ pθ]



Our approach

L

EM
θ

L(θ) ≤ L(θt) + 〈∇L(θt), θ − θt〉+ KL[pθt ‖ pθ]

min
t≤T

KL[pθt+1 ‖ pθt ] ≤
1
T (L(θ0)− L(θ∗))

3 parametrization invariant
3 no unknown/infinite constant



Stationary points in KL divergence

GD min
t≤T

1
2‖∇L(θt)‖2 ≤ LL(θ0)− L(θ∗)

T

EM min
t≤T

DA(θt , θt+1) ≤ L(θ0)− L(θ∗)

T

How does DA(θt , θt) relate to stationarity?

GD ‖∇L(θt)‖ = ‖µ̄t − µt‖.
EM DA(θt , θt+1) = DA∗(µ̄t , µt).

GD tries to shrink gradient, EM tries to shrink natural gradient.

DA(θt , θt+1) ≈ 1
2‖∇L(θt)‖2

I(θt)−1



Convergence near a strict local optimum

Known asymptotically: EM has linear convergence rate,

as t →∞ L(θt+1)− L(θ∗) ≤ r(θ∗)[L(θt)− L(θ∗)]

r(θ) = λ
(
Iz | x (θ)Ix ,z (θ)−1) “How much information is missing”

Non-asymptotic: Strong-convexity region relative to A ↔ r(θ) ≤ r

L(θt+1)− L(θ∗) ≤ r [L(θt)− L(θ∗)]

Superlinear convergence if r(θ∗) = 0.



Summary

EM is extremely widely-used for EF models with missing data.
Gaussian mixtures, student t, hidden Markov models, and so on.
But previous non-asymptotic analyses show same rate as GD.

Main result is is a convergence rate of EM in terms of KL divergence:
Based on showing EM for EFs is mirror descent with α = 1.
Invariant to parameterization.

No dependence on Lipschitz constant (which is often ∞).

The paper gives many results beyond the basic setting:
Adding a conjugate prior (still parameterization-invariant).
Linear/superlinear local convergence rates.

Depending on ratio of missing information.
Approximate M-steps, and cases where M-step is not in the EF.


