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Learning with Missing Values

Missing values are very common in real datasets.
Models/data often have unobserved/hidden/latent values.

For example, we may want to fit a Gaussian to a dataset like this:
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One of the most common algorithms for this setting is EM.

“Expectation maximization".

Applies when problem is “easy"” to solve with no missing values.
Uses probabilistic “soft” assignments to missing variables.

For many problems it leads to simple closed-form updates.



Expectation Maximization: Optimization with MAR Variables

EM was independently invented for a variety of different problems.

Paper giving general form is among most-cited across all fields:

Maximum Likelihood from Incomplete Data Via the EM Algorithm
AP Dempster, NM Laird, DB Rubin - Journal of the Royal Statistical Society, 1977
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Some common applications:
Mixture of Gaussians.
Multivariate student t.
Hidden Markov models.
Factor analysis.
Semi-supervised learning.
Graphical models with missing data.

In many problems, we introduce missing variables to use EM.



MLE from Incomplete Data via the EM Algorithm
(Exponential Families)

Maximum likelihood with observed data x and missing z:

average over missing data

—_——
L(0) = —log p(x|0) = — log /p(x,z|9) dz

Most classic EM applications have complete data in exponential family,
p(x,z]0) oc exp({T (x, 2),0) — A(0))
E-step: Compute the expected sufficient statistics
Bt = Euop(z | x,00[ T (X, 2)]
M-step: Maximum likelihood/Moment matching
Find 041 such that E, . px.z(0..)[T(x,2)] = fit

Increases likelihood, parameterization invariant, converges to stationary*.



Example: Mixture of Gaussians

Application: modeling multi-modal data with mixture of Gaussians
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We introduce missing variable for each sample (“which Gaussian?").

Yields an intuitive EM update:

E-step: compute pr(“example comes from each Gaussian”).
M-step: update cluster parameters using examples “in” cluster.



ence Rate of EM

Is EM a good optimization algorithm?
How fast does it converge?

Previous results:
Asymptotically, EM has linear convergence rate.
No dependence on parameterization.
Instead depends on “amount of missing information”.

But we may never reach asymptotic regime.

Non-asymptotically, “at least as a fast as gradient descent”.
Dependent on parameterization.
Misses dependence on “amount of missing information".

In practice EM is faster than gradient descent.

This work: parameterization-invariant non-asymptotic EM analysis.
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Optimality gap

“EM is at least as fast as GD”
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EM is much faster. What are we missing?



Previous work
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X  depends on the parametrization
X unknown constant, L = oco?



Most models are not smooth

fitting A/ (11, 02)
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Variance can not be upper-bounded by a quadratic



EM for EFs is Mirror Descent

Gradient descent with step-size a:
Ory1 =0 — aV L(O)
€ argmin £(6) + (VL(8,), 0 6.) + é%ue A
Converges if L is (1/a)-smooth.
Mirror descent is a generalization allowing a Bregman divergences:
Ors1 € arg mein L(0:) + (VL(O:),0 — 0:) + éDh(G, 0:)
Converges if £ is (1/a)-smooth relative to a reference function h.

We show EM for EFs is mirror descent (1-smooth relative to A):
9t+1 = arg min ﬂ(@t) + <V£(9t),9 — 6t> + DA(G,et)
0 ——

KL[pe, || pe]



Our approach

L(0) < L(0:) + (VL(0:), 6 — 0r) + KL, || pe]

: 1
min KL{py,,, [| po.] < —(L(00) — L(0-))

v/ parametrization invariant
v/ no unknown/infinite constant



Stationary points in KL divergence

L(00) — £(6,)

2
GD min *HV)C( )T <L T
: L(6) — L(0.
EM min Da(0:,0:11) < M

How does Da(0;, 6;) relate to stationarity?

GD VLGN = [[e — pell-
EM DA(9t79t+1) = Da- (,ata,ut)-

GD tries to shrink gradient, EM tries to shrink natural gradient.

Da (9t79t+1) —HVﬁ( t)”?(et)*l



Convergence near a strict local optimum

Known asymptotically: EM has linear convergence rate,

as t — 0o L(0e1) — £(6.) < r(0.)[L(0:) — £(6.)]

r(0) = AL «(0) 1 2(0) ) “How much information is missing”

Non-asymptotic: Strong-convexity region relative to A «+  r(0) <r

L(0e41) — £(6:) < r[L£(0:) — L£(6.)]

Superlinear convergence if r(6,) = 0.



EM is extremely widely-used for EF models with missing data.

Gaussian mixtures, student t, hidden Markov models, and so on.
But previous non-asymptotic analyses show same rate as GD.

Main result is is a convergence rate of EM in terms of KL divergence:

Based on showing EM for EFs is mirror descent with o = 1.
Invariant to parameterization.

No dependence on Lipschitz constant (which is often o).

The paper gives many results beyond the basic setting:
Adding a conjugate prior (still parameterization-invariant).
Linear/superlinear local convergence rates.
Depending on ratio of missing information.

Approximate M-steps, and cases where M-step is not in the EF.



