Combining Bayesian Optimization and Lipschitz Optimization

ECML 2020

Mohamed Osama Ahmed, Sharan Vaswani, Mark Schmidt University of British Columbia

Bayesian optimization (BO)

- BO solves nonconvex optimization problems

 hyperparameter tuning, control, ...
- Build a probabilistic model for the objective

 Usually using Gaussian Process
- Each iteration optimizes a cheap proxy function instead of the expensive f

Acquisition function decide where to sample next

Lipschitz Continuity

• If *f* is L-Lipschitz continuous then

$$|f(x) - f(x_0)| \le L||x - x_0||, \forall x, x_0 \in \mathbb{R}^d$$

• So *f* can be bounded as follows:

$$f(x_0) - L||x - x_0|| \le f(x) \le f(x_0) + L||x - x_0||$$

Lipschitz BO

- How to use Lipschitz bounds to improve BO?
 - Eliminates points x that cannot be solutions

Contributions

- Propose Lipschitz Bayesian optimization (LBO)
- LBO does not increase the asymptotic runtime
- Propose a simple heuristics to estimate the Lipschitz constant
 - Asymptotically, does not rule out global optimum
 - Harmless in terms of convergence speed
- Our experiments on 15 datasets with 4 acquisition functions show that LBO performs substantially better than BO
- Thompson sampling demonstrates drastic improvements
 - Lipschitz information corrected for its well-known "over-exploration" phenomenon.

- Build a probabilistic model for the objective
 - Usually using Gaussian Process
 - Balances exploration and exploitation
 - Faster than random
 - Can suffer from over-exploration

BO Algorithm

Algorithm Bayesian optimization

Input: initial vector x_0 , observation y_0 , $D_0 = (x_0, y_0)$. for iteration t = 0, 1, 2, ..., T do select new x_{t+1} by optimizing acquisition function a

 $x_{t+1} = \operatorname*{argmax}_{x \in \mathcal{X}} a(x; D_t)$

query objective function to obtain y_{n+1} . update model by $D_{n+1} = (x_{n+1}, y_{n+1})$ end for return location of the maximum

Lipschitz Optimization (LO)

- L gives a bound on the maximum amount that the function can change
- Uses the Lipschitz inequalities to prune the search space
- Faster than random
- Hard to estimate *L*

Lipschitz BO (LBO)

- How to use Lipschitz bounds to improve BO?
 - Eliminates points x that cannot be solutions

Harmless Lipschitz optimization

- In practice, we do not know *L*.
- Solution: calculate underestimate:

$$L_t^{lb} = \max_{i,j \in [t]; x_i \neq x_j} \left\{ \frac{|f(x_i) - f(x_j)|}{||x_i - x_j||_2} \right\}$$

- This estimate monotonically increases
 - But may rule out the solution
- Proposed solution

$$L_t^{ub} = c \ t L_t^{lb}$$

- Paper shows that such strategies are harmless.
 - Guaranteed to be at least as fast as random.

LBO strategies

- We use Lipschitz bounds in BO by modifying popular acquisition functions — Truncated-PI, Truncated-EI, Truncated-UCB
- We define the Lipschitz bounds as:

$$f^{l} = \max_{i} \{f(x_{i}) - L \|x - xi\|_{2}\}$$

$$f^{u} = \min_{i} \{f(x_{i}) + L \|x - xi\|_{2}\}$$

- Instead of the limits on $y \in (-\infty, \infty)$, we set the limits to be (L_f, U_f) .
- L_f is given by:

$$L_{f} = \begin{cases} y^{*}, & \text{if } y^{*} \in (f^{l}(x), f^{u}(x)) \\ f^{u}(x), & \text{if } y^{*} \in (f^{u}(x), \infty) \end{cases}$$

• $U_f = f^u$

Experimental Setup

- GP with Matern kernel
- We use standard tricks such as standardize the function values
- Algorithms compared:
 - EI, PI, UCB and TS
 - LBO
 - TEI and TPI (Truncated EI and PI)
 - AR-UCB and AR-TS (Accept-Reject UCB and TS)
- Benchmark on standard datasets:
 - Branin, Camel, Goldstein Price, Hartmann (2 variants), Michalwicz (3 variants) and Rosenbrock (4 variants)
 - robot-pushing simulation

Results

• Results are divided into 4 groups:

Scenario	Percentage of cases
LBO provides huge improvements over BO	21%
LBO provides improvements over BO	9%
LBO performs similar to BO	60%
LBO performs slightly worse than BO	10%

Results – Examples of Huge Gain

Results – Examples of Other Scenarios

Some improvement

Same performance

BO better

(a) Rosenbrock 2D-UCB

(c) Rosenbrock 4D-PI

Conclusion

- We proposed simple ways to combine Lipschitz inequalities with some of the most common BO methods.
 - "Harmless method" to overestimate Lipschitz constant.
- Experiments show that this often gives a performance gain.
 - In the worst case it performs similar to a standard BO method.