
Newton-Laplace Updates for Block Coordinate Descent
Machine learning tasks are often formulated as minimizing an objective function f with input x ∈ Rn. When n is large,
block coordinate descent methods are usually efficient as they only update a subset of the variables at each iteration.
In addition to using the gradient information to compute the update, several authors have explored incorporating
second-order information to obtain faster convergence [5, 2]. Specifically, the blockwise-Newton update at iteration
k has the form xk+1
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k) for a selected block b ⊆ [n] = {1, . . . , n} with a step size
αk. Since this method requires solving a linear system of dimension |b|, it incurs an iteration cost of O(|b|3) using
generic matrix factorization methods. This can prohibit the use of large blocks that can potentially lead to faster
convergence. Nutini et al.[4] show that when the chosen block’s sparsity pattern has a tree structure, “message-passing”
algorithms can be used to solve the system in linear time. Srinivasan and Todorov [7] exploit the width of the Hessian’s
computation graph to speed up the Newton update. However, there could still be a limit to how large the blocks can
grow until these structural constraints are violated.

In this work, we consider an alternative structural assumption on the blocks that allows the use of fast solvers for
blockwise-Newton updates. For an undirected weighted graph G, we denote its adjacency matrix byW and the Laplacian
matrix by L. Whenever the (sub-)Hessian of f is a Laplacian matrix, we can leverage near-linear time Laplacian
solvers [6, 3] that perform approximate sub-sampled Cholesky factorization to circumvent the cubic iteration cost. An
application would be the classic graph-based semi-supervised learning problem: given a labeling x = (xl, xu), the label
propagation algorithm [9] minimizes the objective f(xu) =

∑
i∈[n],j∈u wijh(xi − xj) + 1

2

∑
i,j∈u wijh(xi − xj),

where u ⊆ [n] is the set of unlabeled examples and l = [n]\u. When h(z) = z2, the analytical solution can be obtained
from xu = L−1uu (Wulxl) [1] where Luu is the Laplacian on the graph of the unlabeled examples. The Laplacian solvers
allow us to use arbitrarily large block sizes while maintaining an iteration cost in only Õ(|b|). We also show that when
replacing h(·) in f with the Huber loss, the (sub-)Hessian of f still has a Laplacian-like structure, and thus again allows
us to use blockwise-Newton updates to obtain fast convergence with cheap iterations.

In the figure below we show experimental results of L2-regularized label propagation on the “two moons” dataset [8]
with pairwise distance measured in the Huber loss. The Newton updates using exact solvers use fixed-size blocks that
are chosen such that the iteration costs are O(n) and O(n2), respectively, where n = 1900 is the number of variables.
Although we are able to obtain a slightly faster convergence, our iteration cost has increased significantly. If we instead
select the blocks using tree partitioning[4], we are able to use much larger blocks to improve the convergence with
O(n) iteration cost. Finally, the Laplacian solver allows us to use full blocks with |b| = n and converges in only a few
steps without sacrificing iteration time complexity.
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