Efficient Deep Gaussian Process Models for Variable-Sized Inputs

Issam H. Laradji, Mark Schmidt, Vladimir Pavlovic, Minyoung Kim

Motivation					Experimental Setup
	Tractable	Deep Representation	Fully Bayesian	Sequence Kernels	Two problem setups Fixed-sized inputs (FSI) Variable-sized inputs (VSI) Kernel choices RBF for FSI Double [Kuksa et al. 2008] for VSI Implementation Softmax likelihood ADAM with learning rate 1e-5 1000 epochs 200 Inducing points 100 MCMC samples
Gaussian Processes (GP)	True	False	True	True	
Deep Gaussian Processes (DGP)	False	True	True	True	
Deep Random Feature Expansion (DRF)	True	True	True	False	
Deep Neural Networks	True	True	False	False	
GP-DRF (Ours)	True	True	True	True	
Related Work					Results 1: Error Rate
Gaussian processes (GP) [Rasmussen and Williams 2006]					Datasets' description,

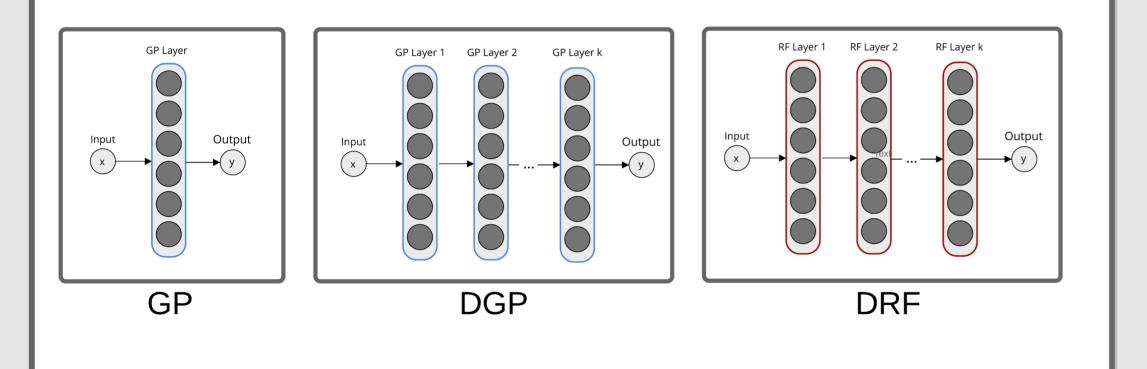
- Gaussian processes (GP) [Rasmussen and Williams 2006]
 - A single layer of non-parametric latent functions

Deep GP [Damianou and Lawrence 2013]

- A sequence of GP layers
- A layer is a latent variable sampled from a GP

Deep random features (DRF) [Cutajer et al. 2017]

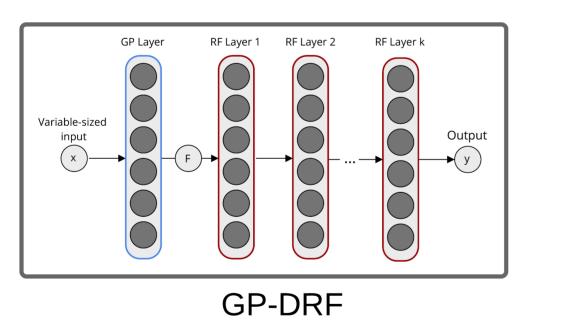
- A sequence of RF layers
- ► A layer is a linear parametric formulation of a GP



Method: GP-DRF

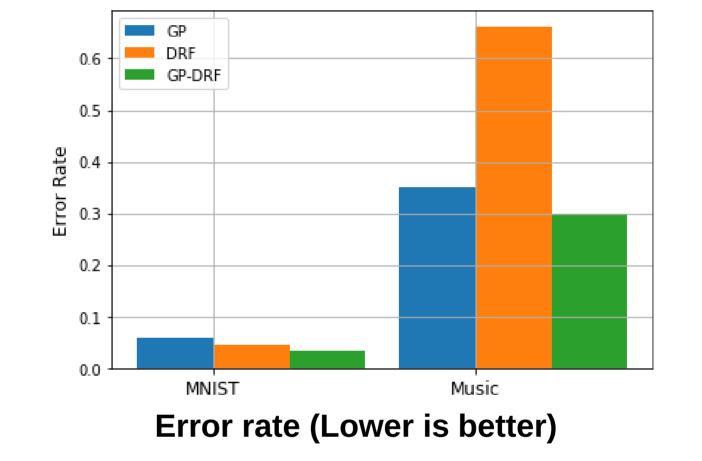
We propose GP-DRF

First layer is a GP followed by a set of RF layers,



Training

Perform Inference for the following posterior distribution,



Kernel

RBF

Double

Input

Fixed-sized

Variable-sized

MNIST

Music

Train

60000

900

Test

10000

100

Classes

10

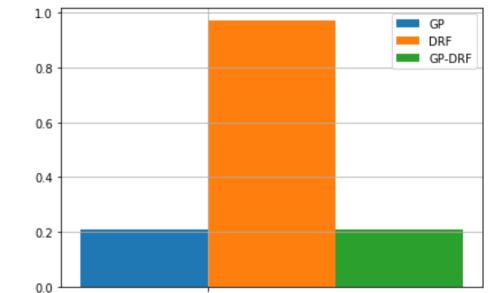
10

Results 2: Battacharya Distance

Bhattacharyya Distance [Bhattacharyya 1946]

- Uncertainty analysis to measure the separatibility of classes
- Depends on the mean and standard deviation of the predictions,

$$D(F_*(x), F_+(x)) = \frac{1}{4} \ln\left(\frac{1}{4}\left(\frac{\sigma_*}{\sigma_+} + \frac{\sigma_+}{\sigma_*} + 2\right)\right) + \frac{1}{4}\left(\frac{(\mu_* - \mu_+)^2}{\sigma_* + \sigma_+}\right),$$
(29)



 $P(F, W, \Omega | X, Y, \Theta).$

• Approximate F, W, Ω using variational density,

$$q(W|\Psi_W) = \prod_{l,i,j} \mathcal{N}(w_{i,j}^l; m_{i,j}^l, (s_{i,j}^l)^2) \quad (12)$$

$$q(\Omega|\Psi_\Omega) = \prod_{l,i,j} \mathcal{N}(\omega_{i,j}^l; \eta_{i,j}^l, (\beta_{i,j}^l)^2) \quad (13)$$

$$q(\overline{F}|\Psi_F) = \prod_{j=1}^{d_0} \mathcal{N}(\overline{F}^j; \mu_j, \Sigma_j), \quad (14)$$

Maximize ELBO using SGD,

 $ELBO(\Psi, \Theta) = \sum_{n=1}^{N} \mathbb{E}_{q}[\log P(y_{n}|G(F_{n}; W, \Omega, \theta_{o}), \theta_{l})] - KL(q(W, \Omega, \overline{F})||P(W, \Omega, \overline{F})). \quad (16)$

Prediction

- Using MCMC, sample $y_*^{(t)} \sim P(y_*|G(F_*^{(s)}; W^{(s)}, \Omega^{(s)}, \theta_o), \theta_l)$
- Estimate the mean and variance, respectively, as,

$$\frac{1}{T} \sum_{t=1}^{T} y_{*}^{(t)} \qquad \text{Tex} (:= \overline{y}_{*}) \quad (27)$$

$$\frac{1}{T-1} \sum_{t=1}^{T} (y_{\rm Text}^{(t)} - \overline{y}_{*})^{2}.$$
 (28)

W X

(10)

Music B. Distance for the correctly labeled (Higher is better) Music B. Distance for the Incorrectly labeled (Lower is better)

Summary

GP-DRF

- A fast and accurate deep Bayesian model
- GP helps in learning sequence kernels
- DRF for fast approximation of deep Gaussian processes

Future Work

- Use it with more interesting Graph kernels
- Use its uncertainty measure for active learning

