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Nucleic Acid Kinetic Simulators
•Nucleic acid kinetic simulators aim to predict the kinetics of reactions involving interacting 
nucleic acid strands  
• e.g., rate of a reaction or sequence of interactions between the strands

•Useful for nucleic acid-based devices
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[Srinivas et al., 2017]



Nucleic Acid Kinetic Simulators
•Model kinetics at various levels of granularity
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[Ouldridge et al., 2013] [Schaeffer et al., 2015]

Molecular dynamics models that follow the 
three-dimensional motion of the polymer chains

Continuous-time Markov chain (CTMC)  models 
with elementary steps that consider the forming 
or breaking of a single base pair 



The Multistrand Kinetic Simulator 
[Schaeffer et al., 2015]
•Kinetics of (multiple) interacting strands are modelled as CTMCs with elementary steps.

•States represent a collection of non-pseudoknotted
secondary structures

•Transitions between the states correspond to the forming or
breaking of a base pair

•Transition rates determine the holding time of states and 
the transition probabilities between states
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The Multistrand Kinetic Simulator 
[Schaeffer et al., 2015]
•Kinetics of (multiple) interacting strands are modelled as CTMCs with elementary steps.

• Transition rates are determined by a  kinetic model
(along with a thermal stability model)
• Metropolis kinetic model (2 free parameters)

• Arrhenius kinetic model (15 free parameters)

• Arrhenius rate constants and activation energies

• Transitions depends on the local context of the 
base pair that is forming or breaking
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The Multistrand Kinetic Simulator 
[Schaeffer et al., 2015]
•Stochastically samples trajectories for a reaction
• Sequences of states from an initial to a target state, along with the holding times to transition between 

successive states

•Uses Gillespie’s Stochastic Simulation Algorithm (SSA) [1977], which advances forward in two steps

1. Samples the holding time of a current state from an exponential distribution with a rate equal 
to the sum of the outgoing transition rates from the state

2. Samples the next state from the outgoing transition probabilities of the current state 
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Adapted from [Schaeffer, 2013]



Mean First Passage Time (MFPT) 
Estimation
•The first passage time (FPT) of a trajectory, the first time that the trajectory occupies the target 
state, is the sum of the holding times of the states of the trajectory

•Estimate the mean first passage time (MFPT) from an initial state to a target state by using the 
FPT of independently sampled trajectories

→MFPT is useful to estimate kinetic rates, such as reaction rate constant
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Parameter Estimation for DNA Kinetic
Models

•To accurately estimate reaction kinetics, kinetic models should be calibrated
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Challenges
•Two challenging tasks in accurately estimating reaction kinetics in the full state space of all non-
pseudoknotted secondary structures

1. MFPT estimation 

• Sampling trajectories could be slow

• Exact linear algebra methods is infeasible for CTMCs with large implicitly-represented state spaces

2. Parameter estimation for DNA kinetic models based on MFPT estimates 

• MFPT estimation for every parameter set variation could be slow
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Contributions
•We address the following tasks in accurately estimating reaction kinetics in the full state space of all non-
pseudoknotted secondary structures

1. MFPT estimation

• We show how to use a reduced variance stochastic simulation algorithm (RVSSA)

2. Parameter estimation for DNA kinetic models based on MFPT estimates 

• We introduce a fixed path ensemble inference (FPEI) approach
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Reduced Variance Stochastic Simulation 
Algorithm (RVSSA)
•RVSSA advances forward in two steps:  

1. Computes the expected holding time of a state equal to the inverse of the sum of the transition rates 
from the state

2. Samples the next state from the outgoing transition probabilities of the current state 

•RVSSA computes the MFPT of a path as the sum of the expected holding times of the states

•RVSSA  estimates the MFPT from an initial state to a target state by using the MFPT of independently 
sampled paths

→ The estimator of the MFPT produced by RVSSA has a lower variance than the estimator produced by SSA
→RVSSA has smaller expected mean squared error and requires fewer sampled paths
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How well do RVSSA and SSA Compare?

•We conduct computational experiments on real data
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Dataset
•21 reactions
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Hairpin closing and opening [Bonnet et al. 1998]  Helix association [Hata et al., 2017] [Wetmur, 1976] and 
helix dissociation (with mismatches) [Cisse et al., 2012] 



MFPT Estimation
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(b) Association of  25-mer poly(A) with 25-mer 
poly(T) [Wetmur, 1976]

(a) Association of CCCACACTCTTACTTATCGACT 
with complement [Hata et al., 2017] 



Contributions
•We address the following tasks in accurately estimating reaction kinetics in the full state space of all 
non-pseudoknotted secondary structures

1. MFPT estimation

• We show how to use a reduced variance stochastic simulation algorithm (RVSSA)

2. Parameter estimation for DNA kinetic models based on MFPT estimates 

• We introduce a fixed path ensemble inference (FPEI) approach

15



Stochastic Simulation Algorithm 
Inference (SSAI)

•We minimize the mean squared error (MSE) of the log of the MFPT estimates and the experimentally 
determined MFPTs

•Accurately estimating MFPTs for every parameter set variation could be slow 
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Fixed Path Ensemble Inference (FPEI)
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• We condense a path by computing the set of states and the number of times each state is visited
• We also require information about outgoing transitions of each state of the path, since we compute the 

holding time of a state in a path as if the path is regenerated in the full state space 



Fixed Path Ensemble Inference (FPEI)

We occasionally generate a new ensemble of fixed condensed paths
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How do FPEI and SSAI Compare?

•We conduct computational experiments on real data
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Dataset of Experimental Reaction Rate 
Constants
•19 reactions
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Hairpin closing and opening [Bonnet et al. 1998]  Helix association [Hata et al., 2017] and helix 
dissociation (with mismatches) [Cisse et al., 2012] 



Parameter Estimation
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(b) 5 hairpin opening reactions [Bonnet et al., 1998] (a) 5 hairpin closing reactions [Bonnet et al., 1998] 



Parameter Estimation
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(a) 5 helix dissociation reactions (with mismatches) 
[Cisse et al., 2012]

(b) 4 helix association reactions [Hata et al., 2017]



Parameter Estimation
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19 reactions: hairpin closing [Bonnet et al. 1998], hairpin opening [Bonnet et al. 1998],  helix 
association [Hata et al., 2017] and helix dissociation (with mismatches) [Cisse et al., 2012]



Summary
•We address the following tasks in accurately estimating reaction kinetics in the full state space of all non-
pseudoknotted secondary structures

•MFPT estimation

• We show how to use a reduced variance stochastic simulation algorithm (RVSSA)

•Parameter estimation for DNA kinetic models based on MFPT estimates 

• We introduce a fixed path ensemble inference (FPEI) approach

•Computational experiments on real data by augmenting the Multistrand kinetic simulator

• RVSSA is useful when states of paths between initial and final states have large expected holding times

• FPEI is useful when the number of unique states of the fixed paths between initial and final states is 
significantly smaller than the length of the paths, and is applicable if the fixed condensed paths can be 
generated in a timely manner
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