Where are the Masks:

Instance Segmentation with Image-level Supervision

Issam H. Laradji - David Vazquez - Mark Schmidt

Motivation

Most Instance segmentation methods require very costly human effort - They need per-pixel labels

Our method requires **significantly less** human effort

- It only needs image-level labels

Experimental setup

Evaluation metric

- Mean average precision for Intersection-over-Union (IoU) of 0.25, 0.5, and 0.75.

Dataset

- PASCAL VOC 2012 using only image-level annotations

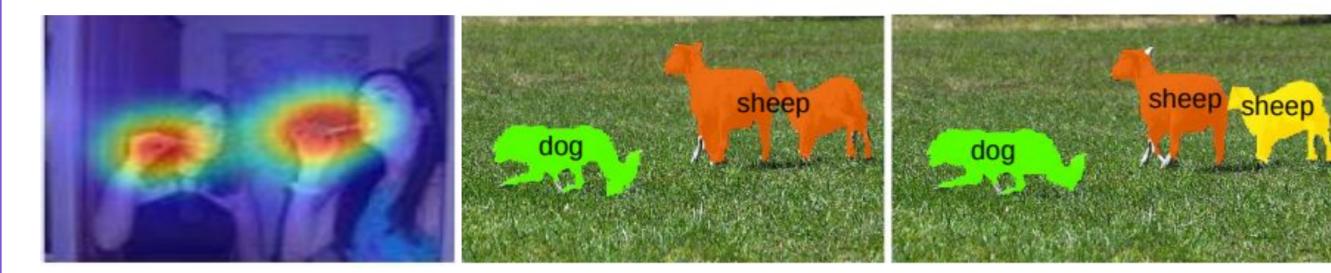
Implementation details

Network architecture

Backbone: ResNet-50 ImageNet pretrained

Optimization

- Scale images to so that the short axis has a minimum of 800px and the long axis a maximum of 1333px
- Batch size 1
- SGD with learning rate of 0.00125 for 50K iterations
- Data augmentation: horizontal flips and color jittering


Per-pixel labels (Mask R-CNN)

Point-level annotations

Image-level annotation (Ours)

Related work

Image-level labels as weak supervision

CAM: Class Activation Map PRM: Peak Response Map [Zhou et al. 2018] [Zhou et al. 2016]

PRM + counting [Cholakkal et al. 2019]

Learning with pseudo labels

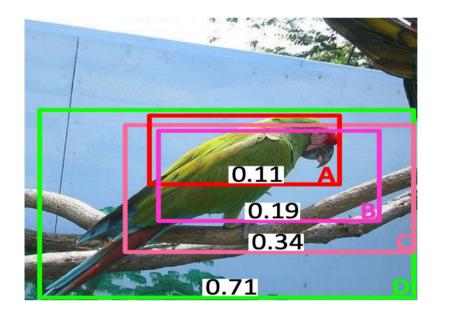
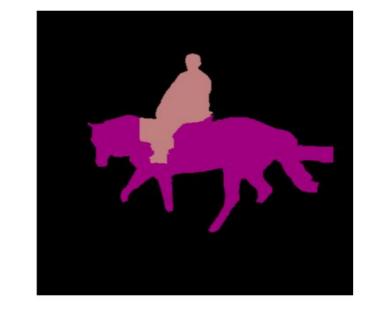
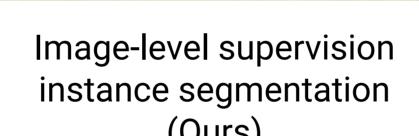




Image-level supervision object detection [Dai et al. 2015]

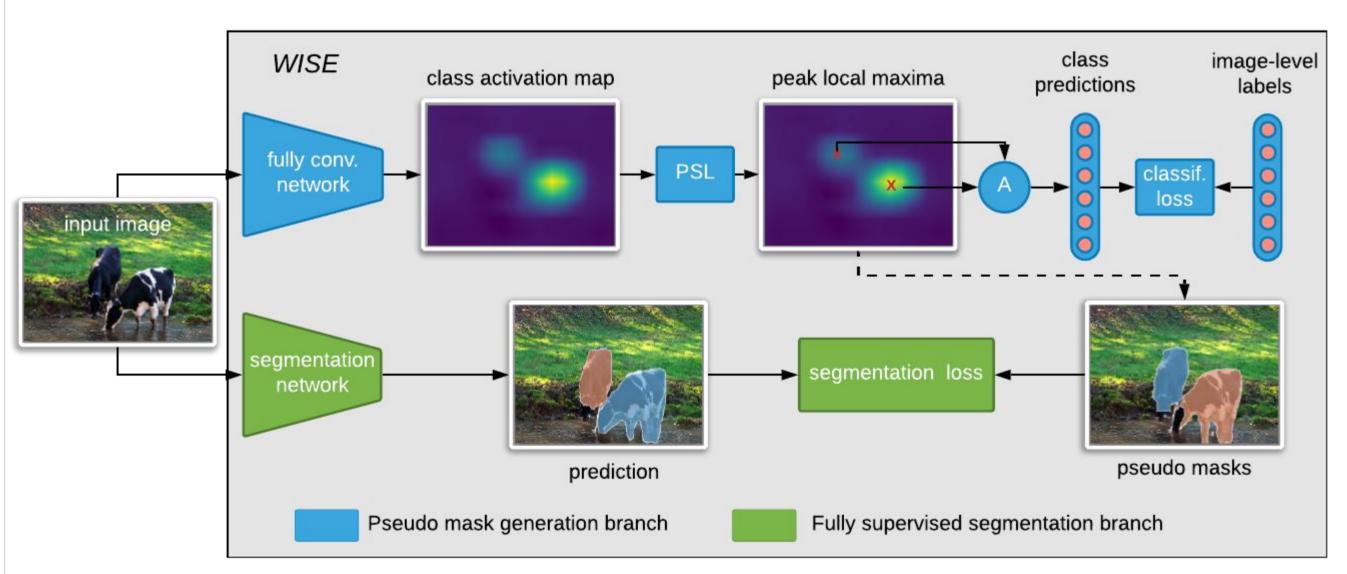
Bbox supervision semantic segmentation [Tang et al. 2017]

(Ours)

Quantitative results

Results on PASCAL VOC 2012 dataset

Method	Supervision	mAP25	mAP50	mAP75	ABO	
Mask R-CNN [16]	pixel-level	58.9	51.4	32.4	-	
DeepMask [18]	pixel-level	-	41.7	09.7	-	
PRM [44]	image-level	44.3	26.8	09.0	37.6	
PRM+Density [9]	image-level++	48.5	30.2	14.4	44.3	
DeepMask [18]	bounding box	39.4	08.1	-	-	
WISE (Ours)	image-level	48.5	40.4	22.2	51.3	
WISE+Refine (Ours)	image-level	49.2	41.7	23.7	55.2	


Method	aero	bike	bird	boat	bottle	snq	car	cat	chair	COW	table	dog	horse	motor	person	plant	sheep	sofa	train	tv	Avg.
Mask R-CNN	71.2	0.3	72.2	53.2	29.8	68.7	47.3	77.1	13.3	54.7	41.0	65.5	51.5	69.6	57.8	31.0	46.9	45.6	69.7	61.4	51.4
WISE	59.2	0.6	62.6	38.6	18.8	57.3	31.7	66.9	8.3	40.5	11.0	55.5	48.7	60.2	34.4	24.4	38.3	33.1	61.7	56.9	40.4
WISE+Refine	63.2	0.3	60.7	39.1	21.0	59.4	31.9	68.6	9.2	43.1	15.6	58.0	48.6	62.3	36.4	21.9	38.8	34.3	65.5	56.9	41.7

Qualitative results

Proposed Method: WISE

Weakly-supervised Instance SEgmentation (WISE)

Step 1 - Pseudo Mask Generation Branch

Localizing the objects (with image-level labels)

- First, generate the class activation map to find the object regions
- Then, obtain the peak local maximas as object centroids
- Finally, take the average of the local maximas for multi-label classification

Generating the training pseudo-labels

- Generate 1000 proposal masks from a pretrained SharpMask
- Replace each predicted object location obtained with an proposal mask

- De-noising strategy: select a proposal randomly based on its objectness

Step 2 - Fully Supervised Segmentation Branch

- Using Step (1), construct the per-pixel labels for all training images
- Train a Mask R-CNN on these labels

Prediction

- At test time only the trained Mask R-CNN is used -
- Refinement: Replace each predicted object mask with the proposal of highest IoU

Summary

WISE

- Generate pseudo-masks using a PRM procedure and object proposals
- Train Mask-RCNN using these proposals

Future Work

Train using count-level supervision in order to extend it to crowded datasets

References

[He et al. 2017] - Mask R-CNN. [Zhou et al. 2016] - Learning Deep Features for Discriminative Localization. [Zhou et al. 2018] - Weakly Supervised Instance Segmentation using Class Peak Response [Cholakkal et al. 2019] - Object Counting and Instance Segmentation with Image-level Supervision [Tang et al. 2017] - Multiple Instance Detection Network with Online Instance Classifier Refinement [Dai et al. 2015] - BoxSup: Exploiting Bounding Boxes to Supervise Convolutional Networks for Semantic Segmentation

issamou@cs.ubc.ca, dvazquez@elementai.com, schmidtm@cs.ubc.ca